Math 206A: Algebra Additional Midterm 1 Practice Problems

Here are some additional practice problems to help you prepare for Midterm 1.

1. Exercise 4 Section 3.4:

Use Cauchy's theorem and induction to show that a finite abelian group G has a subgroup of order n for each positive divisor of $|G|$.
2. Exercises 1,2, and 3 of Section 4.1:

A group action is called transitive if there is exactly one orbit of the action. These three exercises give some basics of transitive group actions. For Exercise 2, Dummit and Foote use G_{a} to denote the stabilizer of $a-\mathrm{I}$ have been avoiding this notation in lecture.
3. Exercise 33 of Section 4.3:

In this exercise you compute the sizes of the different conjugacy classes in S_{n}. You will not see anything involving this much counting on the midterm, but this is good practice for getting comfortable working with groups of permutations.
4. Spring 2019 Comprehensive Exam \#9b:

Either prove the following statement or give a counterexample showing that it is false: If n divides the order of a finite group G, then there exists $g \in G$ of order n.
5. Spring 2019 Comprehensive Exam \#9d:

Either prove the following statement or give a counterexample showing that it is false: If the group G acts on the set S, and if $s \in S$ is an element, then the stabilizer of s is a normal subgroup of G.
6. Spring 2014 Comprehensive Exam \#1:

Suppose G is a finite group, $H \leq G$ and $a \in G$ is such that $a^{k} \in H$ for some integer k with $\operatorname{gcd}(k,|G|)=1$. Prove that $a \in H$.
7. Spring 2014 Comprehensive Exam \#2:

Describe all permutations in S_{n} that commute with $(1,2, \ldots, n)$.
8. Spring 2013 Comprehensive Exam \#2:

Let $n \geq 3$ and let $\sigma \in S_{n}$ be an $(n-1)$ cycle. Show that if $\tau \in S_{n}$ commutes with σ then τ is in the cyclic subgroup generated by σ.
9. Spring 2007 Comprehensive Exam \#1:

Show that A_{4} violates the converse of Lagrange's theorem.
10. Spring 2005 Comprehensive Exam \#G3:

Is there an example of a group G whose subgroups are all normal, but G is not abelian? If not, prove it. If so, describe one such example.

