Math 206A: Algebra Additional Midterm 2 Practice Problems

Here are some additional practice problems to help you prepare for Midterm 2.

1. Lemma 6.2 of Conrad's 'Semidirect Product' notes:

A semidirect product $H \rtimes_{\varphi} K$ is unchanged up to isomorphism if the action $\varphi \colon K \to \operatorname{Aut}(H)$ is composed with an automorphism of K: for automorphisms $f \colon K \to K, \ H \rtimes_{\varphi \circ f} K \cong H \rtimes_{\varphi} K$.

- 2. Spring 2019 Comprehensive Exam #1: Let p, q denote distinct primes. Assume G is a finite group, and assume that G has a unique Sylow p-subgroup and also a unique Sylow q-subgroup. Assume $g_1 \in G$ has order p and $g_2 \in G$ has order q. Prove that $g_1g_2 = g_2g_1$.
- 3. Fall 2006 Advisory Exam #2: Let G be a finite group and let $H, K \leq G$ such that $HK \leq G$.
 - (a) If $h \in H$ and $k \in K$ show that |hk| divides $|H| \cdot |K|$.
 - (b) Let $N \leq G$ be such that |N| is relatively prime to $|H| \cdot |K|$. Prove that HN = KN implies H = K.
- 4. Spring 2009 Comprehensive Exam #1: Show that every group of order 12 is solvable.
- 5. Spring 2009 Comprehensive Exam #10: Show that there is no simple group of order $858 = 2 \cdot 3 \cdot 11 \cdot 13$.
- 6. Spring 2014 Comprehensive Exam #3: Classify all groups of order 2014 = 2 ⋅ 19 ⋅ 53.
 Hint: Show that there is a normal subgroup isomorphic to Z/19Z × Z/53Z and then observe that conjugation by an element of order two induces an order two automorphism of this subgroup.
- Spring 2013 Comprehensive Exam #3: Show that a group of order 340 has a cyclic subgroup of order 85.
- 8. Spring 2013 Comprehensive Exam #1: Show that no group of order 825 is simple.
- 9. Spring 2019 Qualifying Exam #1: Does the symmetric group S_5 contain a subgroup isomorphic to:
 - (a) The dihedral group D_8 with 8 elements?
 - (b) The quaternion group Q_8 with 8 elements?
- 10. Fall 2016 Qualifying Exam #1: Is every group of order 39 cyclic? Either prove this or construct a non-cyclic group of order 39.
- 11. Fall 2016 Qualifying Exam #2: Let H be a subgroup of S_p of order p. What is $|N_{S_p}(H)|$, the order of the normalizer of H?
- 12. Fall 2010 Advisory Exam #3: Show that for any integer $n \ge 1$ the quotient group \mathbb{Q}/\mathbb{Z} has a unique subgroup of order n.