Math 206A: Algebra Additional Midterm 2 Practice Problems

Here are some additional practice problems to help you prepare for Midterm 2.

1. Lemma 6.2 of Conrad's 'Semidirect Product' notes:

A semidirect product $H \rtimes_{\varphi} K$ is unchanged up to isomorphism if the action $\varphi: K \rightarrow \operatorname{Aut}(H)$ is composed with an automorphism of K : for automorphisms $f: K \rightarrow K, H \rtimes_{\varphi \circ f} K \cong H \rtimes_{\varphi} K$.
2. Spring 2019 Comprehensive Exam \#1:

Let p, q denote distinct primes. Assume G is a finite group, and assume that G has a unique Sylow p-subgroup and also a unique Sylow q-subgroup. Assume $g_{1} \in G$ has order p and $g_{2} \in G$ has order q. Prove that $g_{1} g_{2}=g_{2} g_{1}$.
3. Fall 2006 Advisory Exam \#2:

Let G be a finite group and let $H, K \leq G$ such that $H K \leq G$.
(a) If $h \in H$ and $k \in K$ show that $|h k|$ divides $|H| \cdot|K|$.
(b) Let $N \leq G$ be such that $|N|$ is relatively prime to $|H| \cdot|K|$. Prove that $H N=K N$ implies $H=K$.
4. Spring 2009 Comprehensive Exam \#1:

Show that every group of order 12 is solvable.
5. Spring 2009 Comprehensive Exam \#10:

Show that there is no simple group of order $858=2 \cdot 3 \cdot 11 \cdot 13$.
6. Spring 2014 Comprehensive Exam \#3:

Classify all groups of order $2014=2 \cdot 19 \cdot 53$.
Hint: Show that there is a normal subgroup isomorphic to $\mathbb{Z} / 19 \mathbb{Z} \times \mathbb{Z} / 53 \mathbb{Z}$ and then observe that conjugation by an element of order two induces an order two automorphism of this subgroup.
7. Spring 2013 Comprehensive Exam \#3:

Show that a group of order 340 has a cyclic subgroup of order 85 .
8. Spring 2013 Comprehensive Exam \#1:

Show that no group of order 825 is simple.
9. Spring 2019 Qualifying Exam \#1:

Does the symmetric group S_{5} contain a subgroup isomorphic to:
(a) The dihedral group D_{8} with 8 elements?
(b) The quaternion group Q_{8} with 8 elements?
10. Fall 2016 Qualifying Exam \#1:

Is every group of order 39 cyclic?
Either prove this or construct a non-cyclic group of order 39 .
11. Fall 2016 Qualifying Exam \#2:

Let H be a subgroup of S_{p} of order p. What is $\left|N_{S_{p}}(H)\right|$, the order of the normalizer of H ?
12. Fall 2010 Advisory Exam \#3:

Show that for any integer $n \geq 1$ the quotient group \mathbb{Q} / \mathbb{Z} has a unique subgroup of order n.

