Math 206A: Algebra Qualifying Exam Problems: Groups

In this first section we give several problems that are in the style of 'show there is no simple group of order n '. I recommend trying a few of these out to understand how these arguments typically work. (I don't think you need to solve all of them one right after the other!)

1. Fall 2017 \#2: Prove that no group of order 150 is simple.
2. Spring $2017 \# 1$: Let G be a group of order 80 . Prove that G is not simple.
3. Spring $2016 \# 3$: Prove that there is no simple group of order 520.
4. Spring $2015 \# 6$: Suppose that $p<q$ are prime numbers.

Prove that no group of order $p^{2} q$ is simple.
5. Fall 2014 \#4: Prove that no group of order 132 is simple.
6. Fall $2008 \# 3$: Prove that there are no simple groups of order 30 .
7. Spring 2007 \#3: Prove that there are no simple groups of order 105.
8. Fall $2004 \# 3$: Let G be a finite group of order $n>2$. Let H be a subgroup of G such that $r=[G: H]>1$. Assume that $r!<2 n$. Prove that G is no a simple group.
Hint: Construct a map from G into S_{r}.

In this second section we give a whole bunch of problems that involve proving some classification result about groups of order n. As in the previous set of problem, I think you should solve some of these to get used to the kinds of arguments that come up, but I do not recommend solving them all in detail (unless you have lots of extra time).

1. Fall $2019 \# 2$: Let G be a finite group of order $p^{2} q$ where $p<q$ are primes.

Prove that either G has a normal Sylow q-subgroup of G is isomorphic to A_{4}.
2. Spring 2018 \#1: Classify all groups of order $2018=2 \cdot 1009$ up to isomorphism. Justify your answers. (You can assume that 1009 is a prime number.)
3. Fall $2015 \# 4$: Let G be a group of order 70 .

Prove that G has a normal subgroup of order 35 .
4. Spring $2011 \# 5$: Prove that if G is a group of order $5 \cdot 7 \cdot 11$, then the center of G has order divisible by 7 .
5. Spring 2010 \#1: Classify all groups of order 44 up to isomorphism. Make clear which of them are abelian.
6. Fall 2009 \#1: Prove that there are precisely four groups of order 28 up to isomorphism. How many of them are non-abelian?
7. Fall 2008 \#9: Suppose p is an odd prime. Show that there are exactly 5 groups of order $2 p^{2}$ up to isomorphism.
8. Fall $2007 \# 10$: Classify all groups of order 6 up to isomorphism.
9. Spring 2006 \#4: Prove that every group of order 185 is abelian. How many groups of order 185 are there, up to isomorphism?
10. Spring $2005 \# 5$: Classify the groups of order 12 , up to isomorphism.

The following problems ask you to prove something about a particular group.

1. Fall $2018 \# 10 \mathrm{~A}$: Describe the conjugacy classes of Q_{8}.
2. Spring $2018 \# 10 \mathrm{~A}$: Describe the conjugacy classes of A_{4}.
3. Spring $2017 \# 5$: Let D_{8} be the dihedral group of order 8 .
(a) Compute $Z\left(D_{8}\right)$.
(b) Compute the commutator subgroup $\left[D_{8}, D_{8}\right]$.
(c) Compute the conjugacy classes of D_{8}.
4. Spring $2017 \# 2$: Prove that the additive group \mathbb{R} / \mathbb{Z} is isomorphic to the multiplicative group $\{z: \mathbb{C}:|z|=1\}$.
5. Spring $2015 \# 5$: Let $D_{2 n}=\left\langle r, s: r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$.
(a) Prove that every subgroup of $\langle r\rangle$ is normal in G.
(b) If $n=2 m$ with m odd, prove that $D_{2 n}=D_{4 m} \cong \mathbb{Z} / 2 \mathbb{Z} \times D_{2 m}$.
(c) Is $D_{24} \cong \mathbb{Z} / 3 \mathbb{Z} \times D_{12}$?
6. Fall 2013 \#2:
(a) Describe all automorphisms of the group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$. How many are there?
(b) Describe all automorphisms of the ring $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$. How many are there?
7. Fall 2012 \#9D: (Short Answer) What is the largest order of an element in D_{64} ?
8. Fall 2012 \#10 (parts B,D,E): For each of the following, either give an example or explain briefly why no such example exists:
(a) A nonabelian group in which all the proper subgroups are cyclic.
(b) A nonabelian group with trivial automorphism group.
(c) An element of order 4 in \mathbb{R} / \mathbb{Z}.
9. Spring $2012 \# 1 B$: Recall that the exponent of a group G is the smallest positive integer n such that $g^{n}=1$ for all $g \in G$. Compute the exponent of S_{5}.
10. Spring $2012 \# 9$ B: True/False: The group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ has exactly 2 subgroups of index 2 .
11. Spring 2012 \#9C: True/False (give a brief explanation): The group S_{4} is solvable.
12. Spring $2009 \# 1$:
(a) Suppose p is an odd prime dividing n. Prove that a Sylow p-subgroup of $D_{2 n}$ is normal and cyclic.
(b) Prove that if $2 n=2^{\alpha} \cdot k$ where k is odd, then the number of Sylow 2-subgroups of $D_{2 n}$ is k. Describe all these subgroups.
13. Fall $2008 \# 2$ (parts A,C): For each of the following groups G, compute the number of subgroups of G (including the trivial subgroup).
(a) G is a cyclic group of order 63 .
(b) $G=D_{8}$.
14. Spring $2007 \# 2$ (First part): Show that the order of $\mathrm{SL}_{n}(\mathbb{Z} / p \mathbb{Z})$ is

$$
p^{n(n-1) / 2} \prod_{i=2}^{n}\left(p^{i}-1\right)
$$

15. Spring 2008 \#1A: Suppose G is a cyclic group of order 20. How many automorphisms does G have?
16. Fall $2006 \# 5$: Recall that $\mathrm{PGL}_{2}(\mathbb{Z} / 3 \mathbb{Z})=\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z}) / Z\left(\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})\right)$.
(a) Prove that $Z\left(\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})\right)=\left\{ \pm I_{3}\right\}$ where I_{2} is the 2×2 identity matrix.
(b) Prove that $\mathrm{PGL}_{2}(\mathbb{Z} / 3 \mathbb{Z}) \cong S_{4}$.
17. Spring $2005 \# 1$: Let \mathbb{C}^{*} be the group of nonzero complex numbers under multiplication. Let H_{n} be the subgroup of $n^{\text {th }}$ roots of unity. Show that the quotient \mathbb{C}^{*} / H_{n} is isomorphic to \mathbb{C}^{*} by giving an explicit isomorphism.

Here are some additional problems that do not fit nicely into one of the categories above.

1. Spring 2019 \#2: Suppose A is a finitely generated abelian group, B is a subgroup of A and $C=A / B$. Prove that if C is torsion free then the isomorphism classes of B and C determine the isomorphism class of A uniquely. Give a counterexample that shows that the isomorphism class of A may not be uniquely determined if C has non-trivial torsion.
2. Spring $2018 \# 2$: Let P be a group of order $|P|=p^{r}$ for some prime p.
(a) Prove that $Z(P) \neq 1$.
(b) Prove that P is solvable.
3. Fall 2017 \#9C: Indicate whether the following statement is true or false and give a brief justification: The center of a non-abelian group G is always properly contained in some abelian subgroup.
4. Fall $2015 \# 8$: Suppose that H is a normal subgroup of a finite group G.
(a) Prove or disprove: If H has order 2 , then H is a subgroup of the center of G.
(b) Prove or disprove: If H has order 3 , then H is a subgroup of the center of G.
5. Fall 2012 \#9 (parts A, C): State whether each statement is true or false and give a brief explanation.
(a) If a group has an element of order m and an element of order n, then it has an element of order $\operatorname{lcm}(m, n)$.
(b) There are at most $(n!)^{n}$ groups of order n up to isomorphism.
6. Spring $2012 \# 3$: Show that a group with exactly 3 elements of order 2 is not simple.
7. Spring $2009 \# 2$: Let G be a group such that $\operatorname{Aut}(G)$ is cyclic. Prove that G is abelian.
8. Fall $2008 \# 5$: Suppose that G_{1} and G_{2} are finite groups, and $\operatorname{gcd}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)=1$.
(a) Prove that if H is a subgroup of $G_{1} \times G_{2}$ then there are subgroups $H_{1} \leq G_{1}$ and $H_{2} \leq G_{2}$ such that $H=H_{1} \times H_{2}$.
(b) Give an example to show that the conclusion in the previous part is false if we do not require $\operatorname{gcd}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)=1$.
9. Fall $2008 \# 6$: Suppose that G is a finite group and suppose that H is a nontrivial subgroup contained in every nontrivial subgroup of G.
(a) Prove that the order of G is a power of some prime p and G has exactly $p-1$ elements of order p.
(b) Give an example of such a G and H where G is nonabelian of order 8 .
10. Spring 2008 \#1B: How many homomorphisms are there from \mathbb{Z} to S_{n} ? Explain your answer.
11. Spring $2008 \# 1 \mathrm{C}$: If G is a group and $g \in G$ is an element of order 25 , what is the order of g^{10} ?
12. Fall 2006 \#4: Suppose G is a group and H is a finite normal subgroup of G. If G / H has an element of order n, prove that G has an element of order n.
13. Fall 2006 \#8: Suppose that H and K are subgroups of a group G and suppose that H and K have finite index in G. Show that $H \cap K$ also has finite index in G.
