Math 206A: Algebra Summary: Groups

In this document, we'll list of some of the highlights that we covered in the first part of the course. This is meant to be a guide to help you study for the Final Exam. We will include a separate second document focusing on rings.

1 Group Theory Basics: Subgroups and Quotient Groups

1.1 Definitions

- 1. Group;
- 2. Subgroup;
- 3. Abelian Group;
- 4. Cyclic Group;
- 5. Subgroup Generated by a Subset;
- 6. Group Homomorphism;
- 7. Group Isomorphism;
- 8. Direct Product of Groups;
- 9. Quotient Group;
- 10. Normal Subgroup;
- 11. Simple Group;
- 12. Solvable Group;
- 13. Cycle Decomposition of a Permutation;
- 14. Sign of a Permutation;
- 15. Lattice of Subgroups of a Group;
- 16. Center of a Group;
- 17. Normalizer and Centralizer of a Subset of a Group;
- 18. The Conjugate of a set H by an element g;
- 19. Fibers of a Homomorphism;
- 20. Kernel of a Homomorphism;

- 21. Natural Projection Homomorphism;
- 22. Order of an Element;
- 23. Exponent of a Group;
- 24. Index of a Subgroup;
- 25. Product Set HK;
- 26. Conjugacy Class of an Element.

1.2 Examples of Groups

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C};$
- 2. $(\mathbb{Q}^*, \cdot), (\mathbb{R}^*, \cdot), (\mathbb{C}^*, \cdot);$
- 3. $\mathbb{Z} \times \mathbb{Z}$, \mathbb{Z}^n ;
- 4. $\mathbb{Z}/n\mathbb{Z}$ (cyclic groups in general);
- 5. Dihedral Groups D_{2n} ;
- 6. Symmetric Groups S_n ;
- 7. Alternating Groups A_n ;
- 8. Matrix Groups $M_n(R)$, $\operatorname{GL}_n(R)$, $\operatorname{SL}_n(R)$, Affine Group, Heisenberg Group;
- 9. Quaternion Group Q_8 .

1.3 Theorems

- 1. Subgroups and quotients of cyclic groups are cyclic.
- 2. $Z(G), C_G(A), N_G(A) \le G$.
- 3. $N \trianglelefteq G$ if and only if $N = \ker \varphi$ for some group homomorphisms φ .
- 4. Lagrange's Theorem;
- 5. Cauchy's Theorem;
- Isomorphism Theorems (1st, 2nd [Diamond], 3rd [Cancel like fractions one], 4th [Lattice Isomorphism Theorem]);
- 7. The index of subgroups is multiplicative.
- 8. The sign of a permutation is well-defined.
- 9. Subgroups and quotients of solvable groups are solvable.
- 10. S_n is not solvable for any $n \ge 5$.

2 Group Actions

2.1 Definitions

- 1. Left/Right action of a group G on a set X;
- 2. Kernel of a group action;
- 3. Faithful Group Action;
- 4. Free Group Action;
- 5. Orb_x for $x \in X$;
- 6. Stab_x for $x \in X$;
- 7. Fixed point of an action;
- 8. Fix_q(X) for $g \in G$.

2.2 Examples of Group Actions

- 1. G acting on itself by left multiplication;
- 2. G acting on itself by conjugation;
- 3. $H \leq G$, G acting on G/H by left multiplication;
- 4. G acts on its subgroups by conjugation.

2.3 Theorems

- 1. Cayley's theorem.
- 2. There is a bijection between actions of a group G on a set X and group homomorphisms $G \to \operatorname{Sym}(X)$.
- 3. Let G act on X.
 - (a) Different orbits are disjoint.
 - (b) For each $x \in X$, $\operatorname{Stab}_x \leq G$ and $\operatorname{Stab}_{g \cdot x} = g \operatorname{Stab}_x g^{-1}$.
 - (c) $g \cdot x = g' \cdot x$ if and only if g and g' lie in the same left coset of Stab_x . In particular, $|\operatorname{Orb}_x| = [G : \operatorname{Stab}_x].$

4. Let G be a finite group acting on a finite set X and x_1, \ldots, x_r be representatives of the distinct orbits of this action.

$$|X| = \sum_{i} |\operatorname{Orb}_{x_{i}}| = \sum_{i} [G : \operatorname{Stab}_{x_{i}}].$$

Choose the particular action of conjugation and get Class Equation.

- 5. Burnside's Lemma.
- 6. Fixed Point Congruence.
- 7. Any nonabelian group of order 6 is isomorphic to S_3 .
- 8. A finitely generated group G has only finitely many subgroups of index n for each $n \ge 1$.
- 9. Let G be finite and p be the smallest prime dividing |G|. Any subgroup of G of index p is normal.
- 10. Conjugacy classes in S_n are determined by cycle type.
- 11. A_5 is simple. A_n is simple for $n \ge 5$.

3 Automorphisms, Sylow's Theorem, Direct Products, and Semidirect Products

3.1 Definitions

- 1. Automorphism of a group;
- 2. Inner automorphism;
- 3. Characteristic subgroup;
- 4. Sylow *p*-subgroup;
- 5. Invariant factors and elementary divisors of a finite abelian group;
- 6. Semidirect product of H, K with respect to $\varphi \colon K \to \operatorname{Aut}(H)$.

3.2 Theorems

- 1. Sylow's Theorem (Parts I,II,III, and III*).
- 2. (a) Characteristic subgroups are normal.
 - (b) If H is the unique subgroup of G of given order then H is characteristic.
 - (c) Characteristic subgroups of normal subgroups are normal.

- 3. Let $H \leq G$. Then G acts by conjugation on H as automorphisms of H. In particular, $G/C_G(H)$ is isomorphic to a subgroup of Aut(H).
- 4. A group of order 30 has a normal Sylow 3-subgroup and a normal Sylow 5-subgroup.
- 5. A group of order 12 has either a normal Sylow 3-subgroup or is isomorphic to A_4 .
- 6. A group of order p^2q where p, q are distinct primes has either a normal Sylow *p*-subgroup of a normal Sylow *q*-subgroup.
- 7. Let p be a prime. An element of $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ with order p is conjugate to a matrix $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$. In this group $n_p = p + 1$.
- 8. Fundamental theorem of finitely generated abelian groups.
- 9. Primary decomposition theorem.
- 10. Recognition theorem for direct products.
- 11. Recognition theorem for semidirect products.
- 12. Classification of groups of order pq, 12 and 30.
- 13. Techniques to show that there are no simple groups of order n: Counting elements, 'No subgroup of small index'.