Math 206B: Algebra
 Homework 4

Due Wednesday, February 10th at 12:00PM. Please email nckaplan@math.uci.edu with questions.

1. Exercise 3 of Section 9.1

This is an exercise that I mentioned in lecture, which gives a more general version of the observation that $\mathbb{Z}[x][y] \cong \mathbb{Z}[y][x]$.
2. Exercise 5 of Section 9.1

This exercise is similar to Exercise 4 of Section 9.1, which was the last example we talked about in Lecture 8.
3. Exercises 1 and 2 of Section 9.2

First, note that Exercise 3 of Section 9.2 is part of Proposition 15 of Section 9.5 , which we proved in Lecture 11.
Let p be a prime and k be a positive integer. These three exercises taken together show that in order to construct a finite field of order p^{k} all we need to do is find an irreducible polynomial of degree k in $(\mathbb{Z} / p \mathbb{Z})[x]$. In 206 C we will give a formula for the number of irreducible polynomials in $(\mathbb{Z} / p \mathbb{Z})[x]$ of degree k (it is on page 588 in Section 14.3). In particular, we will see that there is always at least one such polynomial. Combining this with Exercise 3 of Section 7.5 , which we solved on HW1, shows that a finite field of order q exists if and only if q is a power of a prime.
4. Exercise 4 of Section 9.2

One idea for this problem is to imitate Euclid's proof that there are infinitely many primes in \mathbb{Z} : Suppose that there are only finitely many primes $\left\{p_{1}, \ldots, p_{N}\right\}$. What can we say about $p_{1} \cdots p_{N}+1 ?$
5. Exercise 11 of Section 9.2

This is an exercise I discussed in lecture. It is the analogue in $\mathbb{Q}[x]$ of Exercise 4 in Section 8.1, which you solved on an earlier HW.
6. Exercises 5 of Section 9.2

In this exercise you determine the structure of the set of ideals of $F[x] /(p(x))$. This ends up being very useful in solving several previous Algebra Comprehensive and Qualifying Exam problems.
7. Exercise 1 of Section 9.3

This exercise asks about the relationship between factorizations in $R[x]$ and in $F[x]$, and uses these ideas to show that a certain rings is not a UFD.
8. Exercise 2 of Section 9.3

This exercise gives a nice fact about products of polynomials with rational coefficients.
9. Exercise 3 of Section 9.3.

This exercise is basically the same as Spring 2020 Algebra Comprehensive Exam \#4. It is a nice example showing that sometimes you can find a ring that is not a UFD inside of a ring that is a UFD.
10. Exercise 3 of Section 9.4

This exercise gives a nice example of different technique for showing that a polynomial is irreducible.

