Math 206B: Algebra Midterm 1: Things to Know

This document builds on something I wrote up at the end of Math 206A. I will give a list of key definitions to know followed by some important results to know.

1 Ring Theory Basics

1.1 Definitions

1. Ring;
2. Field;
3. Division Ring/Skew Field;
4. Zero Divisor;
5. Unit;
6. Integral Domain;
7. Commutative Ring;
8. Unital Ring (Ring with Identity);
9. Subring;
10. Quotient Ring;
11. Left Ideal, Right Ideal, (Two-Sided) Ideal;
12. Ring Homomorphism;
13. Kernel and Image of a Ring Homomorphism;
14. The sum and product of ideals;
15. Ideal Generated by a Set;
16. Principal Ideal;
17. Maximal Ideal;
18. Prime Ideal;
19. Ring of Fractions;
20. Field of Fractions;
21. The Subfield Generated by a Subset;
22. Comaximal Ideals;
23. Norm;
24. Euclidean Domain;
25. Discrete Valuation;
26. Greatest Common Divisor;
27. Principal Ideal Domain;
28. Irreducible Element;
29. Prime Element;
30. Unique Factorization Domain;
31. Associates;
32. Ascending Chain Condition on Ideals;
33. Noetherian Ring.

1.2 Examples

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$;
2. $\mathbb{Z} / n \mathbb{Z}$;
3. Rings of Functions;
4. Real (Hamilton) Quaternions;
5. Quadratic Fields $\mathbb{Q}(\sqrt{D})$ and Quadratic Integer Rings. Norms in Quadratic Fields and Quadratic Integer Rings.
6. Polynomial Rings $R[x], R\left[x_{1}, \ldots, x_{n}\right], R\left[x_{1}, x_{2}, \ldots\right]$;
7. Matrix Rings $M_{n}(R)$;
8. Example of an ideal that is not principal;
9. Example of an ideal that is not finitely generated;
10. Example of a prime ideal that is not maximal;
11. Example of an irreducible element that is not prime;
12. Example of an integral domain that is not a UFD;
13. Examples of Rings of Fractions, $\mathbb{Z} \rightarrow \mathbb{Q}, \mathbb{Z}[x] \rightarrow \mathbb{Q}(x)$;
14. Examples of Euclidean Domains, $\mathbb{Z}, F[x], \mathbb{Z}[i]$.

1.3 Theorems

1. Let $a, b, c \in R$ with a not a zero divisor. If $a b=a c$ either $a=0$ or $b=c$. If R is an integral domain, then $a b=a c$ implies $a=0$ or $b=c$.
2. A finite integral domain is a field.
3. The units in $R[x]$ are the units of $R . R$ is an integral domain if and only if $R[x]$ is an integral domain.
4. If R is a ring and I is an ideal of R, then the quotient group R / I is a ring with multiplication operation $(r+I) \cdot(s+I)=r s+I$. Conversely, if I is an additive subgroup of R such that the operation above is well-defined, then I is an ideal of R.
5. The kernel of a ring homomorphism is an ideal. Every ideal I is the kernel of the natural projection homomorphism from R to R / I.
6. Isomorphism Theorems for Rings (1st, 2nd, 3rd, 4th).
7. A commutative ring R with identity $1 \neq 0$ if a field if and only if R has no nonzero proper ideals.
8. In a commutative ring R with identity $1 \neq 0$, every proper ideal is contained in a maximal ideal. (Proof used Zorn's lemma.)
9. In a commutative ring R with identity $1 \neq 0$, if M is an ideal of R then M is maximal if and only if R / M is a field.
10. In a commutative ring R with identity $1 \neq 0$, if P is an ideal of R then P is prime if and only if R / P is an integral domain.
11. In a commutative ring R with identity $1 \neq 0$, every maximal ideal is prime.
12. Theorem 15 in Section 7.5 (on the existence of the rings of fractions);
13. The Chinese Remainder Theorem and its consequences for the ring $\mathbb{Z} / n \mathbb{Z}$.
14. Every Euclidean Domain is a PID.
15. Greatest common divisors in a Euclidean domain can be computed algorithmically (Theorem 4 in Section 8.1).
16. Every nonzero prime ideal in a PID is maximal.
17. If R is a commutative ring such that $R[x]$ is a PID then R is a field.
18. In an integral domain, a prime element is always irreducible.
19. In a PID a nonzero element is prime if and only if it is irreducible.
20. In a UFD a nonzero element is prime if and only if it is irreducible. (This implies the previous result.)
21. Given two elements of a UFD that are factored into products of irreducible elements, it is easy to compute their gcd (Proposition 13 Sec. 8.3).
22. Every ideal of R is finitely generated if and only if R satisfies the Ascending Chain Condition on Ideals.
23. Every PID is a UFD.
24. Fermat's Theorem on the sum of two squares and the description of irreducible elements in $\mathbb{Z}[i]$ (Proposition 18 Sec. 8.3).
25. The description of positive integers that can be written as a sum of two squares.

The number of ways that such an integer can be written as a sum of two squares. (Corollary 19 Sec. 8.3).
26. The comparison of $R[x] /(I)$ and $(R / I)[x]$, 'Reducing the coefficients modulo I '. (Proposition 2 Sec. 9.1)

