Math 206B: Algebra

Final Exam
Thursday, March 18, 2021.

- You have 2 hours for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used.

Do not use a calculator.

- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.
(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

T/F Short Answer	
$\mathbf{1}$ (3 Points)	
$\mathbf{2}$ (3 Points)	
$\mathbf{3}$ (3 Points)	
$\mathbf{4}$ (3 Points)	
$\mathbf{5}$ (5 Points)	
$\mathbf{6}$ (5 Points)	
Total	

Problems	
$\mathbf{1}$ (10 Points)	
$\mathbf{2}$ (8 Points)	
$\mathbf{3}$ (6 Points)	
$\mathbf{4}$ (8 Points)	
$\mathbf{5}$ (10 Points)	
Total	

Problems	
$\mathbf{6}$ (10 Points)	
$\mathbf{7}$ (10 Points)	
$\mathbf{8}$ (8 Points)	
$\mathbf{9}$ (8 Points)	
Total	

True/False and Short Answer

1. True or False: If R is a commutative ring with identity and R has a unique prime ideal then R is a field.
You only need to answer 'True' or 'False'. No other explanation is necessary.
2. True or False: Let R be a PID, M be a finitely generated free R-module, and N be a submodule of M. Then N is free.
You only need to answer 'True' or 'False'. No other explanation is necessary.
3. True or False: Let R be an integral domain, M be a finitely generated R-module and N be a submodule of M. Then N is finitely generated.
You only need to answer 'True' or 'False'. No other explanation is necessary.
4. True or False: Let V be a vector space and $V=A \oplus B=C \oplus D$ with $A \cong C$. Then $B \cong D$. You only need to answer 'True' or 'False'. No other explanation is necessary.
5. Is there an example of a UFD that is not a PID?

Either give an example (you do not need to explain why it works), or give a brief explanation for why no such example exists.
6. Let \mathbb{F}_{3} be a finite field of order 3 . Let V be a 3 -dimensional vector space over \mathbb{F}_{3}. How many 2-dimensional subspaces are contained in V ?
You only need to write down a number. No other explanation is necessary.

1 Problems

1. Let V, U, and W be finite dimensional vector spaces over \mathbb{C}. Suppose that $\phi: V \rightarrow U$ is an injective linear transformation and $\psi: U \rightarrow W$ is a surjective linear transformation.
Suppose that $\psi \circ \phi=0$ and that $\operatorname{dim} U=\operatorname{dim} V+\operatorname{dim} W$.
Prove that $\operatorname{ker}(\psi)=\operatorname{Im}(\phi)$ as subspaces of U.
2 . Let R be a PID and let M be a finitely generated R-module. Describe the structure of $M / \operatorname{Tor}(M)$.
2. Let R be a ring and let M be a left R-module. Let

$$
M_{1} \subseteq M_{2} \subseteq \cdots
$$

be a chain of submodules of M. Let

$$
N=\bigcup_{i=1}^{\infty} M_{i} .
$$

Prove that N is a submodule of M.
4. Let R be a commutative ring with 1 and M be any R-module. Prove that $R \otimes_{R} M \cong M$.
5. Suppose A is a finite abelian group, S is a Sylow p-subgroup of A, and p^{k} is the order of S. Prove that $\mathbb{Z} / p^{k} \mathbb{Z} \otimes_{\mathbb{Z}} A$ is isomorphic to S.
6. For which values of $a \in \mathbb{Z} / 5 \mathbb{Z}$ is the ring $(\mathbb{Z} / 5 \mathbb{Z})[x] /\left(x^{3}+a x+2\right)$ a field?

Prove that your answer is correct.
7. Prove that a finite subgroup of the multiplicative group of a field is cyclic.
8. Find the greatest common divisor $d(X)$ of the polynomials

$$
f(X)=X^{4}-X^{2}+2 X-1, \quad \text { and } g(X)=X^{4}+2 X^{3}+X^{2}-1
$$

in $\mathbb{R}[X]$.
9. Prove that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

