Math 206B: Algebra
 Final Exam Solutions

Thursday, March 18, 2021.

True/False and Short Answer

1. True or False: If R is a commutative ring with identity and R has a unique prime ideal then R is a field.
Solution: This is false. For example, consider the subring of \mathbb{Q} consisting of all rational numbers with odd denominators. This has a unique prime ideal, (2).
We saw another example of such a ring on Midterm 1.
2. True or False: Let R be a PID, M be a finitely generated free R-module, and N be a submodule of M. Then N is free.
Solution: This is true. This is part of the main theorem we used in proving the Classification of Modules over a PID, Existence: Invariant Factor Form.
(Theorem 4 in Section 12.1 of Dummit and Foote.)
3. True or False: Let R be an integral domain, M be a finitely generated R-module and N be a submodule of M. Then N is finitely generated.
There was a typo in this question. Everyone will receive full credit for it.
Solution: This is false. Let R be a ring that has an ideal I that is not finitely generated. R is a module over itself and I is a submodule that is not finitely generated.
4. True or False: Let V be a vector space and $V=A \oplus B=C \oplus D$ with $A \cong C$. Then $B \cong D$. Solution: When V is infinite dimensional it is not always true that $B \cong D$. For example, suppose $A=\bigoplus_{i=1}^{\infty} F$ and $B=F$ and $D=F^{2}$. Then we have $A \oplus B \cong C \oplus D$, but $B \not \approx C$. (Two free F-modules on sets of the same cardinality are isomorphic- Exercise 1 Section 10.3.)
5. Is there an example of a UFD that is not a PID?

Solution: Yes- $\mathbb{Z}[x]$ is a UFD that is not a PID. We know that \mathbb{Z} is a UFD and that if R is a UFD then $R[x]$ is a UFD. We know that $\mathbb{Z}[x] /(x) \cong \mathbb{Z}$ is an integral domain that is not a field. Therefore (x) is a prime ideal that is not maximal, so $\mathbb{Z}[x]$ cannot be a PID.
6. Let \mathbb{F}_{3} be a finite field of order 3 . Let V be a 3 -dimensional vector space over \mathbb{F}_{3}. How many 2-dimensional subspaces are contained in V ?
Solution: Let F be a finite field of size q and V and n-dimensional vector space over F. We know that the number of k-dimensional subspaces of V is

$$
\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)} .
$$

In this case we get

$$
\frac{(27-1)(27-3)}{(9-1)(9-3)}=\frac{26 \cdot 24}{8 \cdot 6}=13
$$

1 Problems

1. Let V, U, and W be finite dimensional vector spaces over \mathbb{C}. Suppose that $\phi: V \rightarrow U$ is an injective linear transformation and $\psi: U \rightarrow W$ is a surjective linear transformation.
Suppose that $\psi \circ \phi=0$ and that $\operatorname{dim} U=\operatorname{dim} V+\operatorname{dim} W$.
Prove that $\operatorname{ker}(\psi)=\operatorname{Im}(\phi)$ as subspaces of U.
Solution: Let v_{1}, \ldots, v_{n} be a basis for V. Then $\phi(V)$ is isomorphic to V and $\phi\left(v_{1}\right), \ldots, \phi\left(v_{n}\right)$ is a basis for it. We know that this can be extended to a basis of $U: \phi\left(v_{1}\right), \ldots, \phi\left(v_{n}\right), u_{1}, \ldots, u_{k}$. Since $\operatorname{dim} U=\operatorname{dim} V+\operatorname{dim} W$ we see that $\operatorname{dim} W=k$. Applying the surjective map ψ to our basis vectors for U we see that $\psi\left(\phi\left(v_{1}\right)\right), \ldots, \psi\left(\phi\left(v_{n}\right)\right), \psi\left(u_{1}\right), \ldots, \psi\left(u_{k}\right)$ is a generating set for W. Since $\psi \circ \phi=0$ we see that $\psi\left(\phi\left(v_{1}\right)\right)=\cdots=\psi\left(\phi\left(v_{n}\right)\right)=0$. Therefore, $\psi\left(u_{1}\right), \ldots, \psi\left(u_{k}\right)$ is a generating set of W of size k, so it is a basis for W. In particular, no nonzero linear combination of u_{1}, \ldots, u_{k} is in $\operatorname{ker}(\psi)$.
We conclude that $\operatorname{ker}(\psi)$ is exactly equal to the subspace of U generated by $\phi\left(v_{1}\right), \ldots, \phi\left(v_{n}\right)$. We saw earlier that these vectors are a basis for the image of ϕ.

2 . Let R be a PID and let M be a finitely generated R-module.
Describe the structure of $M / \operatorname{Tor}(M)$.
Solution: By the classification of finitely generated R-modules, we have that

$$
M \cong R^{r} \oplus R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{m}\right)
$$

where a_{1}, \ldots, a_{m} are nonzero nonunit elements of R satisfying $a_{1}\left|a_{2}\right| \cdots \mid a_{m}$.
We know that

$$
\operatorname{Tor}(M) \cong R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{m}\right)
$$

We have a natural projection homomorphism $\pi: M \rightarrow R^{r}$ by first applying the isomorphism described above and then taking

$$
\pi\left(x_{1}, \ldots, x_{r}, y_{1} \quad \bmod (a), \ldots, y_{m} \quad \bmod \left(a_{m}\right)\right)=\left(x_{1}, \ldots, x_{r}\right)
$$

It is clear that π is surjective and $\operatorname{ker}(\pi) \cong \operatorname{Tor}(M)$.
Applying the 1st Isomorphism Theorem completes the proof.
3. Let R be a ring and let M be a left R-module. Let

$$
M_{1} \subseteq M_{2} \subseteq \cdots
$$

be a chain of submodules of M. Let

$$
N=\bigcup_{i=1}^{\infty} M_{i} .
$$

Prove that N is a submodule of M.
Solution: We apply the submodule criterion: N is a submodule if and only if for all $x, y \in N$ and $r \in R$ we have $x+r \cdot y \in N$.

Suppose $x, y \in N$. Then $x \in M_{i}$ for some i and $y \in M_{j}$ for some j. Without loss of generality, $j \geq i$. So $x, y \in M_{j}$. Since M_{j} is a submodule of M, by the submodule criterion $x+r \cdot y \in M_{j}$. Therefore $x+r \cdot y \in N$.
4. Let R be a commutative ring with 1 and M be any R-module. Prove that $R \otimes_{R} M \cong M$.

Solution: We claim that the map $r \otimes m \rightarrow m$ is an R-module isomorphism.
We know that the map $R \times M \rightarrow M$ given by $(r, m) \rightarrow r \cdot m$ is bilinear (this is basically the definition of what it means for M to be an R-module). By the universal mapping property for tensor products there exists a unique linear map $L: R \otimes_{R} M \rightarrow M$ for which $L(r \otimes m)=r m$. We claim that this R-module homomorphism is injective and surjective. It is surjective since $L(1 \otimes m)=m$. Every element of $R \otimes_{R} M$ is a finite sum of elementary tensors,

$$
\sum_{i=1}^{n}\left(r_{i} \otimes m_{i}\right)=\sum_{i=1}^{n}\left(1 \otimes r_{i} m_{i}\right) .
$$

If

$$
L\left(\sum_{i=1}^{n}\left(1 \otimes r_{i} m_{i}\right)=\sum_{i=1}^{n} r_{i} m_{i}=0\right.
$$

then $\sum_{i=1}^{n} r_{i} m_{i}=0$, and $\sum_{i=1}^{n}\left(r_{i} \otimes m_{i}\right)=0$. So this map is injective.
I will also point out that several people proved this result (and in particular the injectivity part) by showing that $f: M \rightarrow R \otimes_{R} M$ defined by $f(m)=1 \otimes m$ is a two-sided inverse for L. This is the strategy Conrad uses in the proof of Theorem 4.5 in his 'Tensor Products' notes. (This statement is the special case where $I=0$.)
5. Suppose A is a finite abelian group, S is a Sylow p-subgroup of A, and p^{k} is the order of S. Prove that $\mathbb{Z} / p^{k} \mathbb{Z} \otimes_{\mathbb{Z}} A$ is isomorphic to S.

Solution: Let $|A|=n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ where the p_{i} are distinct primes. By the classification of finite abelian groups,

$$
A \cong B_{1} \oplus \cdots \oplus B_{k}
$$

where B_{i} is a finite abelian group of order $p_{i}^{\alpha_{i}}$. Moreover, each B_{i} can be written as a direct sum of cyclic \mathbb{Z}-modules of prime power order,

$$
B_{i} \cong \mathbb{Z} / p_{i}^{\beta_{i, 1}} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / p_{i}^{\beta_{i, r_{i}}} \mathbb{Z}
$$

We know that

$$
\mathbb{Z} / p^{k} \mathbb{Z} \otimes_{\mathbb{Z}} A \cong\left(\mathbb{Z} / p^{k} \mathbb{Z} \oplus B_{1}\right) \oplus \cdots\left(\mathbb{Z} / p^{k} \mathbb{Z} \oplus B_{k}\right)
$$

Then

$$
\left(\mathbb{Z} / p^{k} \mathbb{Z} \oplus B_{i}\right) \cong \mathbb{Z} / \operatorname{gcd}\left(p^{k}, p_{i}^{\beta_{i, 1}}\right) \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / \operatorname{gcd}\left(p^{k}, p_{i}^{\beta_{i, r_{i}}}\right) \mathbb{Z}
$$

If $p \neq p_{i}$, then this group is trivial. If $p=p_{i}$ then $p^{k}=\left|B_{i}\right|$ and $\operatorname{gcd}\left(p^{k}, p_{i}^{\beta_{i, j}}\right)=p_{i}^{\beta_{i, j}}$. We conclude that this group is isomorphic to B_{i}, the Sylow p-subgroup of A.
I will also point out that several people used the fact from Example 4.6 in Conrad's 'Tensor Products' notes that $\mathbb{Z} / p^{k} \mathbb{Z} \otimes_{\mathbb{Z}} A \cong A / p^{k} Z$. But, then you need to show that $A / p^{k} A \cong S$. One way to do this is to consider the map $\left[p^{k}\right]: A \rightarrow A$ defined by $\left[p^{k}\right](x)=x+\cdots+x$ (p^{k} times). By definition, the image is $p^{k} A$. It is also clear that $x \in \operatorname{ker}\left(\left[p^{k}\right]\right)$ if and only if the order of x divides p^{k}. The elements in a finite abelian group whose order divides $|S|$ are exactly the elements of the Sylow p-subgroup S. This shows that $p^{k} A$ is the set of elements in $A \backslash S$ together with 0 . So we can write $A \cong S \times p^{k} A$ and consider the projection onto S, that is, $\pi(a, b)=a$. The kernel is $p^{k} A$.
6. For which values of $a \in \mathbb{Z} / 5 \mathbb{Z}$ is the ring $(\mathbb{Z} / 5 \mathbb{Z})[x] /\left(x^{3}+a x+2\right)$ a field?

Solution: This is equivalent to asking for the values of a for which $x^{3}+a x+2$ has no roots in $\mathbb{Z} / 5 \mathbb{Z}$. A cubic polynomial over a field F is irreducible if and only if it has no roots in F.
We work backwards and determine the values of a for which each of the elements of $\mathbb{Z} / 5 \mathbb{Z}$ is a root. We see that 0 is a root if and only if $2=0$, that 1 is a root if and only if $3+a=0$, which means $a=2$, that 2 is a root if and only if $3+2 a+2=0$, which means $a=0$, that 3 is a root if and only if $-1+3 a=0$, which means $a=2$, and that 4 is a root if and only if $-a+1=0$, which means that $a=1$.
We conclude by noting that when $a=0,1,2$ this polynomial has a root and if $a=3,4$ this polynomial does not have a root.
7. Prove that a finite subgroup of the multiplicative group of a field is cyclic.

Solution: Let G be a finite subgroup of F^{*}. By the Classification of Finite Abelian Groups,

$$
G \cong \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{t} \mathbb{Z}
$$

where each $n_{j} \geq 2$ and $n_{i+1} \mid n_{i}$ for each $i \in\{1, \ldots, t-1\}$. We show that $t=1$, which implies that G is cyclic.
An element of order dividing n_{t} in G is an element of order dividing n_{t} in F^{*}, which is a root of the polynomial $x^{n_{t}}-1$ in $F[x]$. A polynomial of degree n_{t} in $F[x]$ has at most n_{t} distinct roots in F.
In the subgroup of G given by the last factor in the decomposition above, we have n_{t} elements of order dividing n_{t}. We also have n_{t} elements of order dividing n_{t} in each of the other factors, since n_{t} divides n_{j} for each $j \leq t$. Therefore, if $t \geq 2$, then G has too many elements of order dividing n_{t}. So $t=1$.
8. Find the greatest common divisor $d(X)$ of the polynomials

$$
f(X)=X^{4}-X^{2}+2 X-1, \quad \text { and } g(X)=X^{4}+2 X^{3}+X^{2}-1
$$

in $\mathbb{R}[X]$.
Solution: We apply the Division Algorithm and see that

$$
\left(X^{4}-X^{2}+2 X-1\right)=1 \cdot\left(X^{4}+2 X^{3}+X^{2}-1\right)+\left(-2 X^{3}-2 X^{2}+2 X\right)
$$

We apply the Division Algorithm again and see that

$$
\left(X^{4}+2 X^{3}+X^{2}-1\right)=\left(\frac{-1}{2} X-\frac{1}{2}\right)\left(-2 X^{3}-2 X^{2}+2 X\right)+\left(X^{2}+X-1\right)
$$

We apply the Division Algorithm again and see that

$$
\left(-2 X^{3}-2 X^{2}+2 X\right)=(-2 X) \cdot\left(X^{2}+X-1\right)+0
$$

Since $X^{2}+X-1$ is the last nonzero remainder in this process, it is $\operatorname{gcd}(f(X), g(X))$.
9. Show that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

Solution: We see that $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ and claim that each of $2,3,1 \pm \sqrt{-5}$ is irreducible in $\mathbb{Z}[\sqrt{-5}]$ and that no two of these are associate.
In $\mathbb{Z}[\sqrt{-5}]$ we have the norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$ and we know that α is a unit if and only if $N(\alpha)= \pm 1$. Therefore, the only units are ± 1. So it is clear that no two of these elements are associate. We note that this norm takes only nonnegative values.
We see that $N(2)=4, N(3)=9$, and $N(1 \pm \sqrt{-5})=6$. Since the norm is multiplicative, showing that there are no elements of $\mathbb{Z}[\sqrt{-5}]$ of norm 2 and no elements of norm 3 , shows that 2,3 , and $1 \pm \sqrt{-5}$ are irreducible.
We see that $x^{2}+5 y^{2}=2$ has no integer solutions (note that $y^{2} \geq 0$ and 2 is not a square), and similarly that $x^{2}+5 y^{2}=3$ has no solutions.

