Math 206B: Algebra
 Midterm 1

Friday, January 29, 2021.

- You have 90 minutes for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used.

Do not use a calculator.

- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.
(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	
$\mathbf{1}$ (6 Points)	
$\mathbf{2}$ (13 Points)	
$\mathbf{3}$ (10 Points)	
$\mathbf{4}$ (12 Points)	
Total	

Problems	
$\mathbf{5}$ (6 Points)	
$\mathbf{6}$ (10 Points)	
$\mathbf{7}$ (6 Points)	
$\mathbf{8}$ (10 Points)	
Total	

Problems

1. Describe all maximal ideals in $\mathbb{Z} / n \mathbb{Z}$ where n is a positive integer.
2. (a) True or False: If R is an integral domain and $I \cap J=\{0\}$ where I and J are ideals in R, then $I=\{0\}$ or $J=\{0\}$.
(b) Let R be a ring with identity $1 \neq 0$. Define the characteristic of R.
(c) True or False: If K and L are fields and $\varphi: K \rightarrow L$ is a ring homomorphism that takes the identity of K to the identity of L, then K and L must have the same characteristic.
3. A ring R is called Noetherian if every strictly increasing chain of ideals $I_{1} \subsetneq I_{2} \subsetneq \cdots$ must be finite in length. Prove that if R is Noetherian, then every ideal of R is finitely generated. Prove that \mathbb{Z} is Noetherian.
4. (a) If R is an integral domain, show that any prime element is irreducible.
(b) If R is a UFD show that any irreducible element is prime.
5. (a) Find a decomposition of 11 into a product of irreducible elements in $\mathbb{Z}[i]$.
(b) Find a decomposition of 13 into a product of irreducible elements in $\mathbb{Z}[i]$.
6. Suppose that I is an ideal of $R=\mathbb{Z}[x]$ and suppose that $p \in I$ for some prime number p. Prove that I can be generated by 2 elements.
7. Does there exist a non-principal ideal in $\mathbb{Z}[\sqrt{-13}]$?

Either give an example, or prove that no such example exists.
8. Let $\mathbb{Q}(x)$ be the field of fractions of the integral domain $\mathbb{Q}[x]$. For the subring

$$
A=\left\{\frac{f(x)}{g(x)} \in \mathbb{Q}(x): g(0) \neq 0\right\},
$$

of $\mathbb{Q}(x)$, prove the following:
(a) A is a PID.
(b) A has a unique irreducible element up to associates.

