Math 206B: Algebra Midterm 1 Friday, January 29, 2021.

- You have **90 minutes** for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used. Do not use a calculator.
- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.

(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	Problems	
1 (6 Points)	5 (6 Points)	
2 (13 Points)	6 (10 Points)	
3 (10 Points)	7 (6 Points)	
4 (12 Points)	8 (10 Points)	
Total	Total	

Problems

- 1. Describe all maximal ideals in $\mathbb{Z}/n\mathbb{Z}$ where n is a positive integer.
- 2. (a) True or False: If R is an integral domain and $I \cap J = \{0\}$ where I and J are ideals in R, then $I = \{0\}$ or $J = \{0\}$.
 - (b) Let R be a ring with identity $1 \neq 0$. Define the *characteristic* of R.
 - (c) True or False: If K and L are fields and $\varphi \colon K \to L$ is a ring homomorphism that takes the identity of K to the identity of L, then K and L must have the same characteristic.
- 3. A ring R is called Noetherian if every strictly increasing chain of ideals $I_1 \subsetneq I_2 \subsetneq \cdots$ must be finite in length. Prove that if R is Noetherian, then every ideal of R is finitely generated. Prove that \mathbb{Z} is Noetherian.
- 4. (a) If R is an integral domain, show that any prime element is irreducible.(b) If R is a UFD show that any irreducible element is prime.
- 5. (a) Find a decomposition of 11 into a product of irreducible elements in Z[i].
 (b) Find a decomposition of 13 into a product of irreducible elements in Z[i].
- 6. Suppose that I is an ideal of $R = \mathbb{Z}[x]$ and suppose that $p \in I$ for some prime number p. Prove that I can be generated by 2 elements.
- 7. Does there exist a non-principal ideal in $\mathbb{Z}[\sqrt{-13}]$? Either give an example, or prove that no such example exists.
- 8. Let $\mathbb{Q}(x)$ be the field of fractions of the integral domain $\mathbb{Q}[x]$. For the subring

$$A = \left\{ \frac{f(x)}{g(x)} \in \mathbb{Q}(x) \colon g(0) \neq 0 \right\},\$$

of $\mathbb{Q}(x)$, prove the following:

- (a) A is a PID.
- (b) A has a unique irreducible element up to associates.