
Math 206B: Algebra
Midterm 1: Solutions

1. Describe all maximal ideals in Z/nZ where n is a positive integer.

Solution 1: By the Lattice Isomorphism Theorem for Rings, ideals of Z/nZ are in bijection
with ideals of Z that contain nZ. Every nontrivial ideal of Z is of the form kZ for some
positive integer k. We know that if a and b are positive integers then aZ ⊇ bZ if and only if
a divides b. Therefore, ideals of Z/nZ are in bijection with ideals mZ where m runs through
a list of divisors of n.

For m | n, (Z/nZ)/(mZ/nZ) ∼= Z/mZ, so we see that the maximal ideals of Z/nZ are exactly
those generated by p ∈ Z/nZ, where p is a prime divisor of n. There is one little exception,
which is that if n = p is a prime, then Z/nZ is already a field and has no maximal ideals.

Solution 2: An ideal in Z/nZ is an additive subgroup of Z/nZ, and in fact, every additive
subgroup is an ideal. Each one of these subgroups is cyclic and is generated by 〈d〉 for some
positive divisor d or n. We know that 〈a〉 ⊆ 〈b〉 if and only if a divides b. Therefore, the
maximal ideals (which are the same as maximal proper subgroups) are exactly the subgroups
generated by primes dividing n. There is one little exception, which is that if n = p is a
prime, then Z/nZ is already a field and has no maximal ideals.

2. (a) True or False: If R is an integral domain and I ∩ J = {0} where I and J are ideals in
R, then I = {0} or J = {0}.
Solution: This is true. Suppose that I 6= {0} and J 6= {0}. Choose a nonzero element
a ∈ I and a nonzero b ∈ J . Since I and J are ideals, ab ∈ I ∩ J . So if I ∩ J = {0}
implies ab = 0. If R is an integral domain, then this is a contradiction.

(b) Let R be a ring with identity 1 6= 0. Define the characteristic of R.

Solution: The characteristic of R is the smallest positive integer n such that 1 + · · ·+ 1
(n times) is equal to 0. If no such positive integer n exists, then R has characteristic 0.

(c) True or False: If K and L are fields and ϕ : K → L is a ring homomorphism that takes
the identity of K to the identity of L, then K and L must have the same characteristic.

Solution: The kernel of ϕ is an ideal of K. The only ideals in a field are the trivial
ideal and the field itself. If ker(ϕ) = K, then ϕ(1) = 0, so ϕ does not take the identity
of K to the identity of L. So we now suppose that ϕ is injective.

Note that
ϕ(n · 1K) = ϕ(1K) + · · ·+ ϕ(1K) = n · ϕ(1L).

Now since ϕ is injective, we see that ϕ(n · 1K) = 0 if and only if n · 1K = 0. Therefore
n · 1K = 0 if and only if n · 1L = 0. So, K and L have the same characteristic.
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3. A ring R is called Noetherian if every strictly increasing chain of ideals I1 ( I2 ( · · · must
be finite in length. Prove that if R is Noetherian, then every ideal of R is finitely generated.
Prove that Z is Noetherian.

Note: We proved the first part of this result in Lecture 6: Video 1.

Solution: Let I be an ideal of R. Let a1 ∈ I be a nonzero element. If (a1) = I, we are done.
If not, choose a2 ∈ I \ (a1). If (a1, a2) = I, then we’re done. If not, choose a3 ∈ I \ (a1, a2).
Continuing in this way, we either find a finite generating set for I or we have a chain of ideals:

(a1) ( (a1, a2) ( (a1, a2, a3) ( · · · ( I.

In fact, we see that each inclusion is proper because we chose ai+1 so that it was not in
(a1, . . . , ai). This is an infinite chain of ideals each properly contained in the next. This
contradicts the assumption that R is Noetherian. Therefore, we must have found a finite
generating set for I.

Every ideal of Z is of the form nZ for some positive integer Z. The set of ideals containing
nZ is the set of dZ where d is a positive divisor of n. This set is finite, so it is clear that I1
is only contained in finitely many ideals, and so any chain must be finite in length.

Solution 2: For the second part, you can prove this statement without starting from the
fact that every nonzero ideal of Z is of the form dZ. Suppose I is a nonzero ideal of Z. Since
I is an additive subgroup it contains some positive integer. Let m be the smallest positive
integer in I. We claim that any ascending chain of ideals containing I has length at most
m. This is because if J is an ideal properly containing I, J must contain a positive integer
smaller than m. Since I ( J , we see that J contains a positive integer k that is not divisible
by m. Applying the division algorithm, k = qm+ r where 1 ≤ r ≤ m− 1.

4. (a) If R is an integral domain, show that any prime element is irreducible.

Note: This is Proposition 10 in Section 8.3.

Solution: Suppose that p ∈ R is prime. Therefore, (p) is a prime ideal. Suppose that
p = ab where a, b ∈ R are nonzero elements. Then ab ∈ (p). Since (p) is prime either
a ∈ (p) or b ∈ (p). Let’s suppose we are in the first case (if we’re in the second case the
argument is similar with a and b switched). Then a = pr for some r ∈ R. Therefore,
p = ab = prb. Since R is an integral domain, we see that rb = 1. Therefore b is a
unit. We see that in any factorization p = ab either a is a unit or b is a unit. So p is
irreducible.

(b) If R is a UFD show that any irreducible element is prime.

Note: This is Proposition 12 in Section 8.3.

Solution: Let p ∈ R be an irreducible element. Consider the ideal (p). Suppose that
ab ∈ (p). Then ab = pc for some c ∈ R. Since we are in a UFD, we can factor a into
a finite product of irreducible elements, a = q1 · · · qr. Similarly, we can factor b into a
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finite product of irreducible elements, b = t1 · · · ts. Since R is a UFD and pc = ab, we
must have that p is associate to some qi or some tj . Switching the roles of a and b if
necessary, we can suppose that p is associate to some qi. Then p divides a.

So, whenever ab ∈ (p), either p divides a or p divides b. Therefore, p is prime.

5. (a) Find a decomposition of 11 into a product of irreducible elements in Z[i].

Solution: We know that a prime p is irreducible in Z[i] if and only if p cannot be written
as a sum of two integer squares. Since any integer congruent to 3 modulo 4 cannot be
written as a sum of two integer squares, 11 is itself irreducible in Z[i].

(b) Find a decomposition of 13 into a product of irreducible elements in Z[i].

Solution: Since 13 = 22 + 32 we see that 13 = (2 + 3i)(2−3i) in Z[i]. Since N(2 + 3i) =
N(2− 3i) = 13, which is prime, these elements are both irreducible in Z[i].

6. Suppose that I is an ideal of R = Z[x] and suppose that p ∈ I for some prime number p.
Prove that I can be generated by 2 elements.

Solution: Ideals I of Z[x] that contain p must contain (p). We know that Z[x]/(p) ∼=
(Z/pZ)[x]. Since Z/pZ is a field, (Z/pZ)[x] is a PID. Therefore, every ideal of (Z/pZ)[x] is
principal, and similarly, every ideal of Z[x]/(p) = (f) for some f ∈ Z[x] such that f gets sent
to f by the natural projection homomorphism π : Z[x]→ Z[x]/(p).

We claim that I = (p, f). This is because I is the set of all polynomials that reduce to
something in (f) after reducing coefficients modulo p. Every such polynomial can be written
as pg(x) + f(x)h(x) where g(x), h(x) ∈ Z[x]. This is (p, f).

7. Does there exist a non-principal ideal in Z[
√
−13]?

Either give an example, or show that no such example exists.

Note: This is very close to the analogous statement for Z[
√
−5], which is Example 2 in

Section 8.1 (page 273).

Solution: The norm in Z[
√
−13] is defined by N(a+ b

√
−13) = a2 + 13b2. We have that

14 = 2 · 7 = (1−
√
−13)(1 +

√
−13).

We claim that all four of the elements 2, 7, (1 −
√
−13), (1 +

√
−13) are irreducible. It is

enough to note that there are no elements in this ring of norm 2 or of norm 7. We claim that
(2, 1−

√
−13) is an ideal that is not principal.

If this ideal were principal, 2, 1−
√
−13) = (α) for some α = a+ b

√
−13, then we would have

to have 2 ∈ (α) and (1−
√
−13) ∈ (α). This would mean that N(α) divides N(2) and N(α)

divides N(1 −
√
−13) = 14. Therefore, N(α) = 2, which is not possible, or N(α) = 1 and

this ideal is all of Z[
√
−13]. In this case, there would be β, γ such that

β2 + γ(1 +
√
−13) = 1.
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But then multiplying by 1−
√
−13 on both sides we see that

β2(1−
√
−13) + γ(1 +

√
−13)(1−

√
−13) = (1−

√
−13).

The left hand side is divisible by 2, but the right hand side is not (if it were, both coefficients
would be even). Therefore, (2, 1 +

√
−13) 6= Z[

√
−13], and (2, 1 +

√
−13) is not principal.

8. Let Q(x) be the field of fractions of the integral domain Q[x]. For the subring

A =

{
f(x)

g(x)
∈ Q(x) : g(0) 6= 0

}
,

of Q(x), prove the following:

(a) A is a PID.

(b) A has a unique irreducible element up to associates.

Note: This ring is an example of a DVR, see Example (4) in Section 8.1, page 272. It is also
an example of Localization, which we discussed when we talked about rings of fractions. See
Example (4) in Section 15.4, page 708.

Solution: We first note that for g(x) ∈ Q[x], g(α) = 0 if and only if x divides g(x).

We know that Q[x] is a Euclidean domain, so it is a UFD. Any polynomial in Q[x] can be
factored uniquely into a product of irreducible elements. Any element of A can be written as
f(x)
g(x) . By factoring the numerator and denominator, we see that any element h(x) of A can be

written as xα · f
′(x)
g′(x) where f ′(0) 6= 0 and g′(0) 6= 0. By the definition of A we see that α ≥ 0.

We define a norm on A by N(h(x)) = α. We see that the units of A are exactly the elements
of norm 0. It is clear that x is irreducible, since it is irreducible in Q[x] and by assumption
no element of A has a factor of x in its denominator. Every element of A is equal to some
power of x times a unit, so x is the unique irreducible up to associates in A.

Let I be an ideal of A. Let p(x) be an element of I with N(p(x)) minimal. We claim that
I = (p(x)). Suppose that q(x) ∈ I. We want to show that p(x) divides q(x). This is clear if
we write

p(x) = xα
f ′(x)

g′(x)
where f ′(0) 6= 0 and g′(0) 6= 0,

and

q(x) = xβ
f ′′(x)

g′′(x)
where f ′′(0) 6= 0 and g′′(0) 6= 0.

Since
f ′(x)

g′(x)
,
f ′′(x)

g′′(x)

are units in A, we see that p(x) divides q(x) in A if and only if α ≤ β. Since p(x) was chosen
so that α would be minimal among all nonzero elements of A, we see that p(x) divides q(x).
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