Math 206B: Algebra
 Midterm 2

Friday, February 26, 2021.

- You have 90 minutes for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used.

Do not use a calculator.

- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.
(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	
$\mathbf{1}$ (8 Points)	
$\mathbf{2}$ (12 Points)	
$\mathbf{3}$ (3 Points)	
$\mathbf{4}$ (10 Points)	
$\mathbf{5}$ (8 Points)	
Total	

Problems	
$\mathbf{6}$ (5 Points)	
$\mathbf{7}$ (10 Points)	
$\mathbf{8}$ (8 Points)	
$\mathbf{9}$ (12 Points)	
Total	

Problems

1. Let F be a field and $f(x) \in F[x]$.

Prove that $F[x] /(f(x))$ is a field if and only if $f(x)$ is irreducible.
2. (a) Let R be a ring with a 1 . Give the definition of a left R-module.
(b) Define what it means for a left R-module M to be free on a subset $A \subseteq M$.
(c) Let M and N be R-modules.

Define what it means for a map $\varphi: M \rightarrow N$ to be an R-module homomorphism.
(d) Suppose M and N are both R-modules and that both M and N are rings.

Give an example of a map $\varphi: M \rightarrow N$ that is an R-module homomorphism but not a ring homomorphism.
Explain why your example works.
3. State whether the following claim is true or false. No Explanation is Necessary. Suppose R is an integral domain. If $f(x) \in R[x]$ has degree d, then $f(x)$ has at most d distinct roots in R.
4. All of the following are isomorphic as \mathbb{R}-vector spaces, but only two of the following are isomorphic as rings. Which two?
Explain why they are isomorphic as rings.
(a) $\mathbb{C} \times \mathbb{C}$
(b) $\mathbb{C}[x] /\left(x^{2}\right)$
(c) $\mathbb{C}[x] /\left(x^{2}+1\right)$
(d) $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$
(e) $\mathbb{R}[x] /\left(x^{4}\right)$
5. What are all of the maximal ideals in the ring $\mathbb{Q}[x] /\left(x^{3}+x^{2}\right)$?

Explain how you know that this is a complete list.
6. Prove that the polynomial $x^{4}+15 x^{3}+20 x^{2}+10 x+45$ is irreducible over \mathbb{Q}.
7. For which primes p is the quotient $(\mathbb{Z} / p \mathbb{Z})[x] /\left(x^{2}+x+1\right)$ a field?

Prove that your answer is correct.
8. Let $G=\mathbb{Z} / 25 \mathbb{Z}$ the cyclic group of order 25 .

Can G be given the structure of a (unital) $\mathbb{Z} / 5 \mathbb{Z}$-module?
Explain your answer.
9. (a) Is there a ring R with identity and an R-module M such that M is torsion-free and no linearly independent subset generates M ?
(b) Is there a ring R with identity and an R-module M such that M is free, $A \subseteq M$ is a maximal linearly independent set, but A does not generate M ?

For each part either give an example and prove that it satisfies the property you are claiming, or prove that no such example exists.

