Math 206B: Algebra Midterm 2 Friday, February 26, 2021.

- You have **90 minutes** for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used. Do not use a calculator.
- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.

(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	
1 (8 Points)	
2 (12 Points)	
3 (3 Points)	
4 (10 Points)	
5 (8 Points)	
Total	

Problems

- 1. Let F be a field and $f(x) \in F[x]$. **Prove** that F[x]/(f(x)) is a field if and only if f(x) is irreducible.
- 2. (a) Let R be a ring with a 1. Give the definition of a left R-module.
 - (b) Define what it means for a left *R*-module *M* to be free on a subset $A \subseteq M$.
 - (c) Let M and N be R-modules. Define what it means for a map $\varphi : M \to N$ to be an R-module homomorphism.
 - (d) Suppose M and N are both R-modules and that both M and N are rings.
 Give an example of a map φ: M → N that is an R-module homomorphism but not a ring homomorphism.
 Explain why your example works.
- 3. State whether the following claim is true or false. No Explanation is Necessary.

Suppose R is an integral domain. If $f(x) \in R[x]$ has degree d, then f(x) has at most d distinct roots in R.

4. All of the following are isomorphic as R-vector spaces, but only two of the following are isomorphic as rings. Which two?
Explain why they are isomorphic as rings.

Explain why they are isomorphic as rings.

- (a) $\mathbb{C} \times \mathbb{C}$
- (b) $\mathbb{C}[x]/(x^2)$
- (c) $\mathbb{C}[x]/(x^2+1)$
- (d) $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$
- (e) $\mathbb{R}[x]/(x^4)$
- 5. What are all of the maximal ideals in the ring $\mathbb{Q}[x]/(x^3 + x^2)$? **Explain** how you know that this is a complete list.
- 6. **Prove** that the polynomial $x^4 + 15x^3 + 20x^2 + 10x + 45$ is irreducible over \mathbb{Q} .
- 7. For which primes p is the quotient $(\mathbb{Z}/p\mathbb{Z})[x]/(x^2 + x + 1)$ a field? **Prove** that your answer is correct.

- Let G = Z/25Z the cyclic group of order 25. Can G be given the structure of a (unital) Z/5Z-module? Explain your answer.
- 9. (a) Is there a ring R with identity and an R-module M such that M is torsion-free and no linearly independent subset generates M?
 - (b) Is there a ring R with identity and an R-module M such that M is free, $A \subseteq M$ is a maximal linearly independent set, but A does not generate M?

For each part either give an example and **prove** that it satisfies the property you are claiming, or **prove** that no such example exists.