Math 206B: Algebra
 Midterm 2 Solutions

Friday, February 26, 2021.

Solutions

1. Let F be a field and $f(x) \in F[x]$.

Prove that $F[x] /(f(x))$ is a field if and only if $f(x)$ is irreducible.
Solution: $F[x]$ is a Euclidean domain, so it is a PID. In a commutative ring R, the quotient R / M is a field if and only if M is maximal. Therefore, we need only show that $(f(x))$ is maximal if and only if $f(x)$ is irreducible.
In an integral domain, prime elements are always irreducible. If $f(x)$ is reducible, then $(f(x))$ is not prime, so $(f(x))$ is not maximal.
In a PID every irreducible element is prime and every prime ideal is maximal. Therefore, if $f(x)$ is irreducible then $(f(x))$ is a maximal ideal.
2. (a) Let R be a ring with a 1 . Give the definition of a unital left R-module.

Solution: A left R-module M is a set together with a binary operation + that makes M into an abelian group, and an action of R on M satisfying:
i. $r \cdot(s \cdot m)=(r s) \cdot m$ for all $r, s \in R, m \in M$;
ii. $r \cdot(m+n)=r \cdot m+r \cdot n$ for all $r \in R, m, n \in M$;
iii. $(r+s) \cdot m=r \cdot m+s \cdot m$ for all $r, s \in R, m \in M$;
iv. $1 \cdot m=m$ for all $m \in M$.
(b) Define what it means for a left R-module M to be free on a subset $A \subseteq M$.

Solution: M is free on A if for every nonzero element $x \in A$ there are unique nonzero
$r_{1}, \ldots, r_{n} \in R$ and unique $a_{1}, \ldots, a_{n} \in A$ such that

$$
x=r_{1} \cdot a_{1}+\cdots+r_{n} \cdot a_{n}
$$

for some positive integer n.
Equivalently, M is free on A if

$$
\sum_{i=1}^{n} r_{i} \cdot a_{i}=0
$$

implies that all r_{i} are equal to 0 .
(c) Let M and N be R-modules.

Define what it means for a map $\varphi: M \rightarrow N$ to be an R-module homomorphism.
Solution: φ is an R-module homomorphism if and only if it satisfies
i. $\varphi(x+y)=\varphi(x)+\varphi(y)$ for all $x, y \in M$;
ii. $\varphi(r \cdot x)=r \cdot \varphi(x)$ for all $r \in R$ and $x \in M$.
(d) Suppose M and N are both R-modules and that both M and N are rings.

Give an example of a map $\varphi: M \rightarrow N$ that is an R-module homomorphism but not a ring homomorphism.
Solution: Let $R=\mathbb{Z}$ and consider the \mathbb{Z}-modules $M=N=\mathbb{Z}$. We know \mathbb{Z} is a ring. We know that \mathbb{Z}-module homomorphisms are just homomorphisms of abelian groups. The \mathbb{Z}-module homomorphism $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\varphi(x)=2 x$ is not a ring homomorphism because

$$
2=\varphi(1 \cdot 1) \neq \varphi(1) \cdot \varphi(1)=2 \cdot 2=4
$$

3. State whether the following claim is true or false. No Explanation is Necessary.

Suppose R is an integral domain.
If $f(x) \in R[x]$ has degree d, then $f(x)$ has at most d distinct roots in R.
Solution: This is true. Let F be the field of fractions of R. We show that $f(x)$ has at most d distinct roots in R by showing that $f(x)$ has at most d distinct roots in F.
This follows from the fact that a polynomial in $F[x]$ has a root in F if and only if it has a factor of degree 1 . Now, $F[x]$ is a UFD. The total number of distinct roots of a polynomial $f(x)$ in F is at most the number of linear factors in the (unique) factorization of $f(x)$. The result follows by induction on the degree.
4. All of the following are isomorphic as \mathbb{R}-vector spaces, but only two of the following are isomorphic as rings. Which two?
Explain why they are isomorphic as rings.
(a) $\mathbb{C} \times \mathbb{C}$
(b) $\mathbb{C}[x] /\left(x^{2}\right)$
(c) $\mathbb{C}[x] /\left(x^{2}+1\right)$
(d) $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$
(e) $\mathbb{R}[x] /\left(x^{4}\right)$

Solution: We know that if F is a field and $f(x) \in F[x]$, then

$$
F[x] /(f(x)) \cong F[x] /\left(g_{1}(x)^{r_{1}}\right) \times \cdots \times F[x] /\left(g_{n}(x)^{r_{n}}\right)
$$

where $f(x)=u g_{1}(x)^{r_{1}} \cdots g_{n}(x)^{r_{n}}$ is factorization of $f(x)$ (in the UFD $\left.F[x]\right)$ and $g_{1}(x), \ldots, g_{n}(x)$ are distinct monic irreducibles in $F[x]$, and each $r_{i} \geq 1$.
We note that $x^{2}+1=(x+i)(x-i)$ in $\mathbb{C}[x]$, and therefore

$$
\mathbb{C}[x] /\left(x^{2}+1\right) \cong \mathbb{C}[x] /(x+i) \times \mathbb{C}[x] /(x-i) \cong \mathbb{C} \times \mathbb{C}
$$

This last statement follows from the fact that $\varphi: \mathbb{C}[x] \rightarrow \mathbb{C}$ defined by $\varphi(f(x))=f(i)$ is a surjective homomorphism with kernel $(x-i)$ (and the corresponding statement for $\varphi(f(x))=$ $f(-i)$).
5. What are all of the maximal ideals in the ring $\mathbb{Q}[x] /\left(x^{3}+x^{2}\right)$?

Explain how you know that this is a complete list.
Solution: Let F be a field. By the Lattice Isomorphism Theorem for Rings, there is a bijection between ideals in $F[x] /(f(x))$ and ideals in $\mathbb{F}[x]$ containing $(f(x))$. Since $F[x]$ is a PID, we see that $(g(x))$ contains $(f(x))$ if and only if $g(x)$ divides $f(x)$ in $F[x]$.
Since $x^{3}+x^{2}=x^{2}(x+1)$ in $\mathbb{Q}[x]$, we see that the proper ideals in $\mathbb{Q}[x]$ containing $x^{3}+x^{2}$ are exactly $(x),\left(x^{2}\right),(x(x+1))$, and $(x+1)$. The maximal ones are the ones corresponding to the irreducible polynomials, (x) and $(x+1)$. Therefore, there are two maximal ideals in $\mathbb{Q}[x] /\left(x^{3}+x^{2}\right)$, which are $(x) /\left(x^{3}+x^{2}\right)$ and $(x+1) /\left(x^{3}+x^{2}\right)$.
6. Prove that the polynomial $x^{4}+15 x^{3}+20 x^{2}+10 x+45$ is irreducible over \mathbb{Q}.

Solution: Since this is a monic polynomial and 5 divides every coefficient (except the leading 1), and 5^{2} does not divide 45 , this polynomial is irreducible by applying Eisenstein's criterion at $p=5$.
7. For which primes p is the quotient $(\mathbb{Z} / p \mathbb{Z})[x] /\left(x^{2}+x+1\right)$ a field?

Prove that your answer is correct.
Solution: We see that this quotient is a field if and only if $x^{2}+x+1$ is irreducible in $(\mathbb{Z} / p \mathbb{Z})[x]$. Since this polynomial has degree 2 , it is irreducible if and only if it does not have a root in $\mathbb{Z} / p \mathbb{Z}$. We see that 1 is a root of this polynomial if and only if $p=3$. In all other cases, since $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, a root of $x^{2}+x+1$ corresponds to an element in $\mathbb{Z} / p \mathbb{Z}^{*}$ of order 3 . Since $\left|\mathbb{Z} / p \mathbb{Z}^{*}\right|=p-1$, we see that $\mathbb{Z} / p \mathbb{Z}^{*}$ has an element of order 3 if and only if $p \equiv 1(\bmod 3)$. Therefore, this quotient is a field if and only if $p=3$ or $p \equiv 1$ $(\bmod 3)$.
8. Let $G=\mathbb{Z} / 25 \mathbb{Z}$ the cyclic group of order 25 .

Can G be given the structure of a (unital) $\mathbb{Z} / 5 \mathbb{Z}$-module?
Explain your answer.
Solution: Suppose G can be given the structure of a unital $\mathbb{Z} / 5 \mathbb{Z}$-module. We must have $1 \cdot 1=1$ and we must also have

$$
0=0 \cdot 1=(1+1+1+1+1) \cdot 1=1 \cdot 1+1 \cdot 1+1 \cdot 1+1 \cdot 1+1 \cdot 1 .
$$

This is a contradiction since $0 \neq 5$ in G.
To say this a different way, a $\mathbb{Z} / 5 \mathbb{Z}$-module is a vector space over $\mathbb{Z} / 5 \mathbb{Z}$, and the abelian group $\mathbb{Z} / 5^{2} \mathbb{Z}$ is not. (In a vector space over $\mathbb{Z} / 5 \mathbb{Z}$ every element has additive order dividing 5.)
9. (a) Does there exists a ring R with identity and an R-module M such that M is torsion-free and no linearly independent subset generates M ?
Solution: Let $M=\mathbb{Q}$. This is a \mathbb{Z}-module since it is an abelian group. It is torsion free since $n \cdot \frac{a}{b}=0$ implies $n=0$ or $\frac{a}{b}=0$. Any subset of M of size 2 or greater is linearly dependent. Let $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$. If either one is zero, it is easy to see that this set is linearly dependent. So $a, b, c, d \neq 0$. Then we have a nontrivial linear relation

$$
b c \cdot \frac{a}{b}-a d \cdot \frac{c}{d}=0 .
$$

No set of size 1 spans \mathbb{Q}. The set of \mathbb{Z}-linear combinations of $\frac{a}{b}$ only contains rational numbers with denominators of at most b. Therefore, no linearly independent subset generates M.
Note: In lecture we gave another example that works here:

$$
R=\mathbb{Z}[\sqrt{-5}], I=(2,1+\sqrt{-5})
$$

(b) Does there exists a ring R with identity and an R-module M such that M is free, $A \subseteq M$ is a maximal linearly independent set, but A does not generate M ?
Solution: Let $M=\mathbb{Z}$. This is a free \mathbb{Z}-module: $\{1\}$ is a basis. The set $\{2\}$ is a maximal linearly independent set that does not generate \mathbb{Z}. We need only note that for any integer $x,\{2, x\}$ satisfies the nontrivial linear relation $-2 \cdot x+2 \cdot x=0$, so $\{2, x\}$ is linearly dependent.
Note: There are many other examples that work for both parts here.

