
Math 206C: Algebra
Final Exam: Things to Know

In this document, we give some definitions, examples, and theorems that will be helpful to know
for the Final Exam. This document will focus on the material we covered in the course that was
not covered on Midterm 2 (Lectures 21-28).

Definitions

1. The Galois closure of E over F .

2. Simple Extensions and Primitive Elements.

3. Abelian extension. Cyclic extension.

4. The Galois group of a separable polynomial f(x) ∈ F [x].

5. Elementary symmetric functions. The general polynomial of degree n over F .

6. The discriminant of x1, . . . , xn. The discriminant of a polynomial.

7. The resolvent cubic of a quartic g(y) = y4 + py2 + qy + r.
(I do not expect you to be able to write out the coefficients of this polynomial, but you should
be able to define it in terms of the roots of g(y).)

Examples

1. Examples of the Galois Correspondence: Q( 3
√

2, ζ3)/Q, Q(
√

2,
√

3)/Q (computing the minimal
polynomial of

√
2 +
√

3 over Q), Q( 4
√

2, i)/Q.

2. The number of irreducible polynomials of degree 4 in Fp[x].

3. An example showing that the assumption that at least one of K,F ′ is Galois over F really is
necessary to apply Corollary 20 in Section 14.4.

4. Examples of Galois closures.

5. The Galois correspondence for cyclotomic fields: The quadratic subfield Q(ζ5 +ζ−15 ) of Q(ζ5).
The cubic subfield of Q(ζ7) (and the minimal polynomial of a primitive element for it).

6. Galois groups as subgroups of permutation groups. Examples: Q( 3
√

2, ζ3)/Q, Q(
√

2,
√

3)/Q.

7. The discriminant of a quadratic polynomial x2 + ax+ b.
The discriminant of a cubic polynomial y3 + py + q.

8. Computing the Galois group of a cubic polynomial f(x) ∈ F [x] where char(F ) 6= 2, 3.
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9. Computing the Galois group of a quartic polynomial f(x) ∈ F [x] where char(F ) 6= 2, 3.
(I do not expect you to know all of the details here, but you should understand the major
pieces that go into this procedure.)

Theorems

1. The Fundamental Theorem of Galois Theory
(Theorem 14 in Section 14.2. In Lecture 20 we stated and proved all parts of this theorem
except part (5), which we proved in Lecture 21.)

2. The Galois correspondence for finite extensions of Fp. Proposition 15 in Section 14.3.
You should be aware of how this result generalizes to finite extensions of a general finite field
Fq. Exercise 9 of Section 14.3.

3. Fpn is a simple extension of Fp. There exists an irreducible polynomial of degree n over Fp

for each n ≥ 1.

4. xp
n −x is the product of all distinct irreducible polynomials of degree d in Fp[x] where d runs

through all divisors of n.

5. Let Fq be a finite field of order q = pm. Suppose p - n. Let K be the splitting field of xn − 1
over Fq. Then [K : Fq] is the smallest positive integer d such that n | (qd − 1).
(That is, d is the order of q in (Z/nZ)∗.)

6. Suppose K/F is a Galois extension and F ′/F is any extension. Then KF ′/F ′ is a Galois
extension with Gal(KF ′/F ′) ∼= Gal(K/(K ∩ F ′)), which is isomorphic to a subgroup of
Gal(K/F ). (Proposition 19 in Section 14.4.)
Its consequence for degrees of composite extensions (Corollary 20) is often useful.

7. Intersections and composites of Galois extensions are Galois. Description of Gal(K1K2/F )
in terms of Gal(K1/F ) and Gal(K2/F ). (Proposition 21 in Section 14.4.)

8. Let E/F be a finite separable extension. Then E is contained in an extension K that is
Galois over F and is minimal in the sense that in a fixed algebraic closure of K any other
Galois extensions of F containing E contains K. (Corollary 23 in Section 14.4.)

9. The Primitive Element Theorem.

10. Gal(Q(ζn)/Q) ∼= (Z/nZ)∗. (Theorem 26 in Section 14.5)

11. The primitive nth roots of unity give a basis of Q(ζn)/Q iff n is squarefree.
(Exercise 11 in Sectioin 14.5)

12. Composites and intersections of cyclotomic fields.

13. Generators for subfields of Q(ζp)– the elements αH .

14. Suppose E is the splitting field of a separable polynomial f(x) ∈ F [x] of degree n. Then
Gal(E/F ) is isomorphic to a subgroup of Sn. If f(x) is irreducible, then this subgroup is
transitive.
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15. The general polynomial xn− s1xn−1 + s2x
n−2− · · ·+ (−1)nsn is separable with Galois group

Sn. (Theorem 32 in Section 14.6– I would not ask you to prove this on an exam.)

16. Suppose F is a field of characteristic not equal to 2. Let f(x) ∈ F [x] be separable of degree
n. Fix an ordering of the roots of f(x) and view Gal(f) as a subgroup of Sn. Then Gal(f) is
a subgroup of An if and only if the discriminant of F is the square of an element in F .

17. An irreducible cubic f(x) ∈ Q[x] with exactly one real root has Gal(f) ∼= S3. Its generaliza-
tion: Let p be prime. An irreducible f(x) ∈ Q[x] with degree p and exactly p − 2 real roots
has Galois group Sp.

18. Let K/Q be a finite Galois extension (where K ⊂ C). Then complex conjugation restricts to
an element of Gal(K/Q). This element is trivial if K ⊂ R and has order 2 otherwise.

19. The Fundamental Theorem of Algebra.
(You do not need to know the proof, but you should definitely know the statement.)
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