Math 206C: Algebra Homework 1

Due Wednesday, April 14th at 11:59PM. Please email nckaplan@math.uci.edu with questions.

For a ring R, let $Mat_n(R)$ denote the ring of $n \times n$ matrices with entries in R.

- Algebra Qualifying Exam Fall 2017 #4 Determine up to isomorphism all F₂[x]-modules of order 4.
- 2. Algebra Comprehensive Exam Spring 2016 #10 Prove that for a matrix $A \in Mat_n(\mathbb{R})$, the minimal and characteristic polynomial of A coincide if and only if there is a basis of \mathbb{R}^n of the form $\{v, Av, A^2v, \ldots, A^{n-1}v\}$.
- Algebra Comprehensive Exam Spring 2018 #4
 The group GL₂(C) acts on Mat₂(C) by conjugation. Classify the orbits of this action.
 (For example, you could give a list of representatives for the orbits, with one representative for each orbit.)
- 4. Algebra Comprehensive Exam Fall 2012 #7 Classify, up to conjugation, all 4×4 real matrices with minimal polynomial $(x^2 + 4)(x - 1)$.
- 5. Exercise 10 of Section 12.2 This exercise is very similar to Example (4) from pages 486-487 that we discussed in Lecture 4.
- 6. Exercise 11 of Section 12.2
 This exercise builds on Example (4) from pages 486-487 but over C instead of over Q.
 We mentioned this exercise in Lecture 4.
- 7. Exercise 15 of Section 12.2

This exercise is similar to Example (5) from page 487-8. We mentioned in Lecture 4 that this example tells you about matrices in $GL_3(\mathbb{Q})$ of order dividing 6. By also considering matrices of order 3 and 2, you can classify matrices of order **exactly** 6. In this exercise you do something similar for matrices in $Mat_2(\mathbb{Q})$ and $Mat_2(\mathbb{C})$ of order 4.

- Exercise 17 of Section 12.2
 In this exercise you apply the ideas developed in previous exercise for matrices with entries in Q, ℝ, and C, to matrices with entries in a finite field.
- 9. Exercise 18 of Section 12.2 In this exercise you show that if a linear transformation $T: V \to V$ satisfies a certain constraint, then we can deduce something about the dimension of V.