Math 206C: Algebra
 Homework 1

Due Wednesday, April 14th at 11:59PM.

Please email nckaplan@math.uci.edu with questions.
For a ring R, let $\operatorname{Mat}_{n}(R)$ denote the ring of $n \times n$ matrices with entries in R.

1. Algebra Qualifying Exam Fall 2017 \#4

Determine up to isomorphism all $\mathbb{F}_{2}[x]$-modules of order 4 .
2. Algebra Comprehensive Exam Spring 2016 \#10

Prove that for a matrix $A \in \operatorname{Mat}_{n}(\mathbb{R})$, the minimal and characteristic polynomial of A coincide if and only if there is a basis of \mathbb{R}^{n} of the form $\left\{v, A v, A^{2} v, \ldots, A^{n-1} v\right\}$.
3. Algebra Comprehensive Exam Spring 2018 \#4

The group $\mathrm{GL}_{2}(\mathbb{C})$ acts on $\mathrm{Mat}_{2}(\mathbb{C})$ by conjugation. Classify the orbits of this action.
(For example, you could give a list of representatives for the orbits, with one representative for each orbit.)
4. Algebra Comprehensive Exam Fall 2012 \#7

Classify, up to conjugation, all 4×4 real matrices with minimal polynomial $\left(x^{2}+4\right)(x-1)$.
5. Exercise 10 of Section 12.2

This exercise is very similar to Example (4) from pages 486-487 that we discussed in Lecture 4.
6. Exercise 11 of Section 12.2

This exercise builds on Example (4) from pages 486 - 487 but over \mathbb{C} instead of over \mathbb{Q}. We mentioned this exercise in Lecture 4.
7. Exercise 15 of Section 12.2

This exercise is similar to Example (5) from page 487-8. We mentioned in Lecture 4 that this example tells you about matrices in $\mathrm{GL}_{3}(\mathbb{Q})$ of order dividing 6. By also considering matrices of order 3 and 2 , you can classify matrices of order exactly 6 . In this exercise you do something similar for matrices in $\operatorname{Mat}_{2}(\mathbb{Q})$ and $\operatorname{Mat}_{2}(\mathbb{C})$ of order 4 .
8. Exercise 17 of Section 12.2

In this exercise you apply the ideas developed in previous exercise for matrices with entries in \mathbb{Q}, \mathbb{R}, and \mathbb{C}, to matrices with entries in a finite field.
9. Exercise 18 of Section 12.2

In this exercise you show that if a linear transformation $T: V \rightarrow V$ satisfies a certain constraint, then we can deduce something about the dimension of V.

