Math 206C: Algebra
 Homework 2

Due Wednesday, April 21st at 11:59PM.

Please email nckaplan@math.uci.edu with questions.
Let R be a ring and $\operatorname{Mat}_{n}(R)$ be the ring of $n \times n$ matrices with entries in R. For $A \in \operatorname{Mat}_{n}(R)$, let $\operatorname{tr}(A)$ denote the trace of A, the sum of the diagonal entries of A.

1. Algebra Comprehensive Exam Spring 2015 \#7

Suppose $A \in \operatorname{Mat}_{n}(\mathbb{C})$ satisfies $A^{k}=I$ for some k. Show that $|\operatorname{tr}(A)| \leq n$.
2. Algebra Qualifying Exam Spring 2017 \#9

Suppose p is a prime.
(a) Show that all matrices $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ of order exactly p have the same characteristic polynomial and find that polynomial.
(b) Show that all matrices $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ of order exactly p have the same minimal polynomial and find that polynomial.
3. Exercise 2 of Section 12.2

This is the exercise about the minimal polynomial of a block diagonal matrix that we used in Lecture 5 to prove Corollary 25 from Section 12.3.
4. Exercise 4 of Section 12.3

In Lecture 6 we showed one way to diagonalize $x I-A$ where A is the matrix in this exercise, and saw how this let us write down the Jordan canonical form C of A. Using this information together with the algorithm described in Section 12.3 allows you to write down a matrix P such that $C=P^{-1} A P$.
5. Exercise 18 of Section 12.3

In this exercise you determine all possible Jordan canonical forms for a linear transformation with a particular characteristic polynomial. It is similar to an example from lecture.
6. Exercise 19 of Section 12.3

In this exercise you determine conditions on $f(x)$ so that all $n \times n$ matrices with characteristic polynomial $f(x)$ are similar.
7. Exercise 23 of Section 12.3

In lecture we solved an exercise about the possible invariant factors of a 2×2 matrix. In this exercise you compute the rational canonical form and Jordan canonical form of a 2×2 matrix satisfying a certain equation.
Note: In an earlier version of this document there was a typo- I wrote 'Exercise 22' instead of Exercise 23. Maybe some of you have solved Exercise 22 already. That is totally fine. You only need to hand in either Exercise 22 or Exercise 23.
8. Exercise 24 of Section 12.3

In this exercise you show that there are no 3×3 matrices with entries in \mathbb{Q} satisfying $A^{8}=I$ but $A^{4} \neq I$. There are such matrices over \mathbb{C}, for example, consider a diagonal 3×3 matrix where each diagonal entry is an 8 th root of unity that is not a 4 th root of unity.
9. Exercise 31 of Section 12.3

In this exercise you consider the Jordan canonical form of a nilpotent matrix.
10. Exercise 33 of Section 12.3

In this exercise you show that a certain kind of matrix is nilpotent.

