Math 206C: Algebra
 Homework 4

Due Monday, May 10th at 11:59PM.
Please email nckaplan@math.uci.edu with questions.

1. Algebra Comprehensive Exam Fall 2011 \#8

Let F be a field and $f(x) \in F[x]$ be a polynomial of degree $n \geq 1$. Let K_{f} be a splitting field for $f(x)$ over F. Prove that $\left[K_{f}: F\right]$ divides $n!$.
Note: We discussed this problem in Lecture 12 but did not give all of the details.
2. Algebra Comprehensive Exam Spring 2013 \#9

Show that $f(x)=x^{4}-2$ and $g(x)=x^{4}+2$ have the same splitting field over \mathbb{Q}. Denote this splitting field by K. Find $[K: \mathbb{Q}]$ and give a basis for K over \mathbb{Q}.
Note: We discussed this problem in Lecture 12 but did not give all of the details.
3. Exercise 5 in Section 13.4.

When discussing what it means for a field to be algebraically closed, we talked about the difference between every polynomial in $K[x]$ splitting completely in $K[x]$ and every polynomial in $K[x]$ having a root in K. In this exercise you consider this kind of issue for splitting fields and irreducible polynomials.
4. Exercise 1 in Section 13.5. Also prove that

$$
D_{x}\left((x-\alpha)^{n}\right)=n(x-\alpha)^{n-1} .
$$

In this exercise you prove some basic properties of the derivative that we used in Lecture 14.
5. Exercise 5 in Section 13.5

In this exercise you show that every element of a certain family of polynomials in $\mathbb{F}_{p}[x]$ is irreducible and separable over \mathbb{F}_{p}.
6. Exercise 6 in Section 13.5

In this exercise you proof a result that implies Wilson's theorem in number theory.
Note: Wilson's theorem came up as Algebra Comprehensive Exam Spring 2009 \#3.
7. Exercise 7 in Section 13.5.

We mentioned this exercise at the end of Lecture 14. In lecture we proved that if K is a field of characteristic p that is perfect, every irreducible polynomial in $K[x]$ is separable. In this exercise you consider what happens for fields of characteristic p that are not perfect.
8. Exercise 11 in Section 13.5

This exercise is closely related to one of the results from Conard's 'Separability' notes that I stated in Lecture 14, but did not prove.
9. Algebra Qualifying Exam Fall 2020 \#5

Suppose that K is a field of characteristic 5 . For which values of $n>1$ is the polynomial $f(x)=x^{n}-x$ separable?
10. Algebra Qualifying Exam Spring 2016 \#5

Let K be a field and \bar{K} be an algebraic closure of K. Assume $\alpha, \beta \in \bar{K}$ have degree 2 and 3 over K, respectively.
(a) Can $\alpha \beta$ have degree 5 over K ? Either give an example or prove that this is impossible.
(b) Can $\alpha \beta$ have degree 6 over K ? Either give an example or prove that this is impossible.
11. Algebra Qualifying Exam Spring 2017 \#8

Suppose F is a perfect field and $f(x) \in F[x]$ is a nonconstant polynomial. Show that $F[x] /((f(x))$ is a direct product of fields if and only if $f(x)$ is a separable polynomial. Note: An earlier version of this problem did not require the assumption that F is perfect. It really is necessary- the problem is not correct as stated if F is not perfect (see Exercise \#7).

