Math 206C: Algebra Midterm 1 (Fields): Things to Know

The goal of this document is to give a list of definitions and theorems related to the material we have covered so far on Fields (Section 13.1, most of Section 13.2, and a little bit of Section 13.4 of Dummit and Foote) that will be helpful to know for Midterm 1 on Friday, April 23.

Fields

Definitions

- 1. The characteristic of a field.
- 2. The prime subfield of a field.
- 3. Extension of fields.
- 4. The degree of a field extension.
- 5. The field generated by $\alpha_1, \ldots, \alpha_k$ over F. Simple extension. Primitive element.
- 6. Splitting field for $f(x) \in F[x]$.
- 7. What it means for an element α to be algebraic over F. What it means for the extension K/F to be algebraic.
- 8. The minimal polynomial $m_{\alpha,F}(x)$. The degree of α (over F).

Examples

- 1. $\mathbb{R}[x]/(x^2+1)$, $\mathbb{Q}[x]/(x^2+1)$. (Examples 1,2 page 515 in Section 13.1)
- 2. $\mathbb{Q}[x]/(x^2-2)$, $\mathbb{Q}[x]/(x^3-2)$. (Examples 3,4 page 515 in Section 13.1)
- 3. $\mathbb{F}_2[x]/(x^2 + x + 1)$, $\mathbb{F}_3[x]/(x^2 + 2)$ and $\mathbb{F}_3[x]/(x^2 + 2x + 2)$. (Example 6 page 516 in Section 13.1)
- 4. $k(t)[x]/(x^2-t)$. (Example 7 page 516 Section 13.1)
- 5. Examples of minimal polynomials (page 521 Section 13.2)
- 6. Quadratic extensions of fields of characteristic not equal to 2. (Page 522 Section 13.2)

Theorems

- 1. Let F be a field and $p(x) \in F[x]$ be an irreducible. Then there exists a field K containing a subfield isomorphic to F in which p(x) has a root. Identifying F with this isomorphic copy shows that there exists an extension of F in which p(x) has a root. (Theorem 3 in Section 13.1)
- 2. Let F be a field and $f(x) \in F[x]$ be a nonconstant polynomial. Then there exists an extension K of F that is a splitting field for f(x). (Theorem 25 in Section 13.4)
- 3. Description of the elements of F[x]/(p(x)) in terms of $\theta = \overline{x} = x \pmod{(p(x))}$. Description of how to multiply and add elements of this quotient in terms of θ . (Theorem 4 and Corollary 5 in Section 13.1)
- 4. Finding inverses of elements in F[x]/(p(x)). We did θ^{-1} in general, and $\theta^2 + 1$ in $\mathbb{Q}[x]/(x^3-2)$. (Examples 4,5 page 515-6 in Section 13.1).
- 5. Let F be a field and $p(x) \in F[x]$ be an irreducible polynomial. Suppose K is an extension field of F containing a root α of p(x). Then $F(\alpha) \cong F[x]/(p(x))$. Description of the elements of $F(\alpha)$ as polynomials in θ . (Theorem 6 and Corollary 7 in Section 13.1)
- 6. Isomorphism $F \to F'$ leads to an isomorphism $F(\alpha) \to F'(\beta)$. (Theorem 8 in Section 13.1)
- 7. Existence of the minimal polynomial of an element α that is algebraic over F. (Proposition 9 in Section 13.2)
- 8. α is algebraic over F if and only if $F(\alpha)/F$ is finite. (Proposition 12 in Section 13.2)
- 9. Finite extensions are algebraic. (Corollary 13 in Section 13.2)
- 10. The degrees of field extensions are multiplicative. (Theorem 14 in Section 13.2)
- 11. K/F is finite if and only if K is generated by a finite number of algebraic elements over F. (Theorem 17 in Section 13.2)