Math 206C: Algebra Midterm 1 (Fields): Things to Know

The goal of this document is to give a list of definitions and theorems related to the material we have covered so far on Fields (Section 13.1, most of Section 13.2, and a little bit of Section 13.4 of Dummit and Foote) that will be helpful to know for Midterm 1 on Friday, April 23.

Fields

Definitions

1. The characteristic of a field.
2. The prime subfield of a field.
3. Extension of fields.
4. The degree of a field extension.
5. The field generated by $\alpha_{1}, \ldots, \alpha_{k}$ over F.

Simple extension.
Primitive element.
6. Splitting field for $f(x) \in F[x]$.
7. What it means for an element α to be algebraic over F.

What it means for the extension K / F to be algebraic.
8. The minimal polynomial $m_{\alpha, F}(x)$. The degree of α (over F).

Examples

1. $\mathbb{R}[x] /\left(x^{2}+1\right), \mathbb{Q}[x] /\left(x^{2}+1\right)$. (Examples 1,2 page 515 in Section 13.1)
2. $\mathbb{Q}[x] /\left(x^{2}-2\right), \mathbb{Q}[x] /\left(x^{3}-2\right)$. (Examples 3,4 page 515 in Section 13.1)
3. $\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right), \mathbb{F}_{3}[x] /\left(x^{2}+2\right)$ and $\mathbb{F}_{3}[x] /\left(x^{2}+2 x+2\right)$.
(Example 6 page 516 in Section 13.1)
4. $k(t)[x] /\left(x^{2}-t\right)$. (Example 7 page 516 Section 13.1)
5. Examples of minimal polynomials (page 521 Section 13.2)
6. Quadratic extensions of fields of characteristic not equal to 2. (Page 522 Section 13.2)

Theorems

1. Let F be a field and $p(x) \in F[x]$ be an irreducible. Then there exists a field K containing a subfield isomorphic to F in which $p(x)$ has a root. Identifying F with this isomorphic copy shows that there exists an extension of F in which $p(x)$ has a root. (Theorem 3 in Section 13.1)
2. Let F be a field and $f(x) \in F[x]$ be a nonconstant polynomial. Then there exists an extension K of F that is a splitting field for $f(x)$. (Theorem 25 in Section 13.4)
3. Description of the elements of $F[x] /(p(x))$ in terms of $\theta=\bar{x}=x(\bmod (p(x))$. Description of how to multiply and add elements of this quotient in terms of θ.
(Theorem 4 and Corollary 5 in Section 13.1)
4. Finding inverses of elements in $F[x] /(p(x))$. We did θ^{-1} in general, and $\theta^{2}+1$ in $\mathbb{Q}[x] /\left(x^{3}-2\right)$. (Examples 4,5 page 515-6 in Section 13.1).
5. Let F be a field and $p(x) \in F[x]$ be an irreducible polynomial. Suppose K is an extension field of F containing a root α of $p(x)$. Then $F(\alpha) \cong F[x] /(p(x)$. Description of the elements of $F(\alpha)$ as polynomials in θ. (Theorem 6 and Corollary 7 in Section 13.1)
6. Isomorphism $F \rightarrow F^{\prime}$ leads to an isomorphism $F(\alpha) \rightarrow F^{\prime}(\beta)$. (Theorem 8 in Section 13.1)
7. Existence of the minimal polynomial of an element α that is algebraic over F. (Proposition 9 in Section 13.2)
8. α is algebraic over F if and only if $F(\alpha) / F$ is finite. (Proposition 12 in Section 13.2)
9. Finite extensions are algebraic. (Corollary 13 in Section 13.2)
10. The degrees of field extensions are multiplicative. (Theorem 14 in Section 13.2)
11. K / F is finite if and only if K is generated by a finite number of algebraic elements over F. (Theorem 17 in Section 13.2)
