Math 206C: Algebra
 Final Exam

Thursday, June 10, 2021.

- You have 2 hours for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used.

Do not use a calculator.

- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.
(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	
$\mathbf{1}$ (10 Points)	
$\mathbf{2}$ (10 Points)	
$\mathbf{3}$ (10 Points)	
$\mathbf{4}$ (8 Points)	
$\mathbf{5}$ (6 Points)	
Total	

Problems	
6 (8 Points)	
$\mathbf{7}$ (10 Points)	
$\mathbf{8}$ (10 Points)	
$\mathbf{9}$ (10 Points)	
$\mathbf{1 0}$ (10 Points)	
$\mathbf{1 1}$ (8 Points)	
Total	

Problems

1. Let V be a vector space over \mathbb{Q} of dimension at most $p-2$ where p is prime. Let T be a linear transformation on V such that $T^{p}=I$ (where I denotes the identity linear transformation). Show that $T=I$.
2. Determine up to similarity all 3×3 matrices in $\mathrm{GL}_{3}(\mathbb{Q})$ of order exactly 6 .

That is, give a list of matrices in $\mathrm{GL}_{3}(\mathbb{Q})$ of order exactly 6 with such that any matrix in $\mathrm{GL}_{3}(\mathbb{Q})$ of order exactly 6 is similar to a unique matrix in your list.
3. Let $F \subseteq K \subseteq L$ be fields and suppose that L / F is finite. Prove that $[L: F]=[L: K] \cdot[K: F]$.
4. Let K / F be a field extension and $\sigma \in \operatorname{Aut}(K / F)$ be an automorphism of K fixing F. Suppose $f(x) \in F[x]$ and $\alpha \in K$.
(a) Prove that $\sigma(f(\alpha))=f(\sigma(\alpha))$.
(b) Prove that σ permutes the set of roots of $f(x)$ in K.
5. (a) State the Primitive Element Theorem.
(b) Define what if means for a field F of characteristic p to be perfect.
(c) Let F be a field. Define what it means for a field to be an algebraic closure of F.
6. Let F be any field. Prove that if K / F is a finite extension, then it is an algebraic extension.
7. Determine the Galois group of $\left(x^{3}-x+1\right)\left(x^{2}-2\right)$ over \mathbb{Q} as an abstract group.
8. Let K be the splitting field over \mathbb{Q} of $x^{8}-1$.
(a) Find $[K: \mathbb{Q}]$.
(b) Describe the Galois group $G=\operatorname{Gal}(K / \mathbb{Q})$ both as an abstract group and as a set of automorphisms.
(c) Find explicitly all subgroups of G and the corresponding subfields of K under the Galois correspondence.
9. Determine the Galois group of the splitting field of $x^{3}+2$ over \mathbb{F}_{3}, over \mathbb{F}_{7}, and over \mathbb{F}_{11}.
10. Fix a prime p. For all positive integers m and n, let $f(m, n)$ be the number of nonzero ring homomorphisms from $\mathbb{F}_{p^{m}}$ to $\mathbb{F}_{p^{n}}$.
Note: For this question you should assume that a ring homomorphism must take 1 to 1 .
(a) What is $f(m, 6)$?
(b) What is $f(6, n)$?
11. Prove that $\mathbb{Q}(\sqrt[3]{5})$ is not a subfield of any cyclotomic field over \mathbb{Q}.

