Math 206C: Algebra Final Exam Thursday, June 10, 2021.

- You have **2** hours for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used. Do not use a calculator.
- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.

(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	
1 (10 Points)	
2 (10 Points)	
3 (10 Points)	
4 (8 Points)	
5 (6 Points)	
Total	

Problems	
6 (8 Points)	
7 (10 Points)	
8 (10 Points)	
9 (10 Points)	
10 (10 Points)	
11 (8 Points)	
Total	

Problems

- 1. Let V be a vector space over \mathbb{Q} of dimension at most p-2 where p is prime. Let T be a linear transformation on V such that $T^p = I$ (where I denotes the identity linear transformation). Show that T = I.
- Determine up to similarity all 3 × 3 matrices in GL₃(Q) of order exactly 6. That is, give a list of matrices in GL₃(Q) of order exactly 6 with such that any matrix in GL₃(Q) of order exactly 6 is similar to a unique matrix in your list.
- 3. Let $F \subseteq K \subseteq L$ be fields and suppose that L/F is finite. Prove that $[L: F] = [L: K] \cdot [K: F]$.
- 4. Let K/F be a field extension and $\sigma \in Aut(K/F)$ be an automorphism of K fixing F. Suppose $f(x) \in F[x]$ and $\alpha \in K$.
 - (a) Prove that $\sigma(f(\alpha)) = f(\sigma(\alpha))$.
 - (b) Prove that σ permutes the set of roots of f(x) in K.
- 5. (a) State the Primitive Element Theorem.
 - (b) Define what if means for a field F of characteristic p to be perfect.
 - (c) Let F be a field. Define what it means for a field to be an algebraic closure of F.
- 6. Let F be any field. Prove that if K/F is a finite extension, then it is an algebraic extension.
- 7. Determine the Galois group of $(x^3 x + 1)(x^2 2)$ over \mathbb{Q} as an abstract group.
- 8. Let K be the splitting field over \mathbb{Q} of $x^8 1$.
 - (a) Find $[K: \mathbb{Q}]$.
 - (b) Describe the Galois group $G = \operatorname{Gal}(K/\mathbb{Q})$ both as an abstract group and as a set of automorphisms.
 - (c) Find explicitly all subgroups of G and the corresponding subfields of K under the Galois correspondence.
- 9. Determine the Galois group of the splitting field of $x^3 + 2$ over \mathbb{F}_3 , over \mathbb{F}_7 , and over \mathbb{F}_{11} .
- 10. Fix a prime p. For all positive integers m and n, let f(m, n) be the number of nonzero ring homomorphisms from F_{p^m} to F_{pⁿ}.
 Note: For this question you should assume that a ring homomorphism must take 1 to 1.
 - (a) What is f(m, 6)?
 - (b) What is f(6, n)?
- 11. Prove that $\mathbb{Q}(\sqrt[3]{5})$ is not a subfield of any cyclotomic field over \mathbb{Q} .