
Math 206C: Algebra
Final Exam Solutions
Thursday, June 10, 2021.

Problems

1. Let V be a vector space over Q of dimension at most p−2 where p is prime. Let T be a linear
transformation on V such that T p = I (where I denotes the identity linear transformation).
Show that T = I.

Solution: Since T p − I = 0 the minimal polynomial of T divides xp − 1. We know that
xp − 1 = (x− 1)(xp−1 + · · ·+ x+ 1). Also, xp−1 + · · ·+ x+ 1 = Φp(x) is irreducible in Q[x].
(We can prove this by applying Eisenstein’s criterion to Φp(x + 1), or we can note that we
proved that Φn(x) is irreducible for all n.)

Since the dimension of V is the degree of the characteristic polynomial of T , which is greater
than or equal to the degree of the minimal polynomial of T , the only possibility for the
minimal polynomial of T is x−1. The unique linear transformation with minimal polynomial
x− 1 is the identity.

2. Determine up to similarity all 3× 3 matrices in GL3(Q) of order exactly 6.

Solution: A matrix A ∈ GL3(Q) with order dividing 6 satisfies A6 − I = 0. Therefore, the
minimal polynomial of A divides

x6 − 1 = (x− 1)(x2 + x+ 1)(x+ 1)(x2 − x+ 1).

The two quadratic polynomials here are irreducible in Q[x] since they are Φ3(x) and Φ6(x),
or you can see this by applying the quadratic formula.

The minimal polynomial of A, mA(x), divides the characteristic polynomial of A, cA(x), and
deg(cA(x)) = 3. Every invariant factor of A divides mA(x), and since cA(x) is the product
of all the invariant factors, we cannot have mA(x) being one of the two irreducible quadratic
polynomials.

Therefore, mA(x) must be one of the following possibilities:

(a) x− 1

(b) x+ 1

(c) (x− 1)(x+ 1)

(d) (x− 1)(x2 + x+ 1)

(e) (x+ 1)(x2 + x+ 1)
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(f) (x− 1)(x2 − x+ 1)

(g) (x+ 1)(x2 − x+ 1).

We are not looking to classify matrices of order dividing 6, but matrices of order exactly 6.
This means that mA(x) cannot divide x3− 1 or x2− 1. Therefore, mA(x) must be one of the
following possibilities:

(a) (x+ 1)(x2 + x+ 1)

(b) (x− 1)(x2 − x+ 1)

(c) (x+ 1)(x2 − x+ 1).

For each of these three possibilities, we see that mA(x) = cA(x). The companion matrix
of mA(x) is an element in the corresponding similarity class. We conclude that every A ∈
GL3(Q) of order exactly 6 is similar to one of: 0 0 −1

1 0 −2
0 1 −2

 ,

 0 0 1
1 0 −2
0 1 2

 ,

 0 0 −1
1 0 0
0 1 0

 .

3. Let F ⊆ K ⊆ L be fields and suppose that L/F is finite. Prove that [L : F ] = [L : K] · [K : F ].

Solution: We first note that L/F being finite implies that L/K is finite and K/F is finite.
Suppose [K : F ] = m and [L : K] = n. Let {αi}i=1,...,m be a basis for K/F and {βj}j=1,...,n

be a basis for L/K. We show that {αiβj} where i ∈ [1,m] and j ∈ [1, n] is a basis for L/F .

Let γ ∈ L. Since {βj}j=1,...,n is a basis for L/K, we know that γ can be written uniquely as

γ =
n∑
j=1

bjβj , where bj ∈ K.

Since {αi}i=1,...,m is a basis for K/F , each bj can be written uniquely as

bj =

m∑
i=1

cijαi, where cij ∈ F.

Using these expressions for bj we see that

γ =
n∑
j=1

bjβj =
n∑
j=1

m∑
i=1

cijαiβj .

We see that {αiβj} span L as a vector space over F .
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To see that they are linearly independent, note that since {αi}i=1,...,m is a basis for K/F , the
only solution to

0 =

m∑
i=1

ciαi,

is given by c1, . . . , cm = 0. Since {βj}j=1,...,n is a basis for L/K, the only solution to

0 =

n∑
j=1

bjβj

is given by b1, . . . , bn = 0. Therefore,

0 =
n∑
j=1

(
m∑
i=1

cijαi

)
βj

implies that for every j (
m∑
i=1

cijαi

)
= 0.

This implies that for fixed j, each cij = 0, so all cij = 0.

4. Let K/F be a field extension and σ ∈ Aut(K/F ) be an automorphism of K fixing F .
Suppose f(x) ∈ F [x] and α ∈ K.

(a) Prove that σ(f(α)) = f(σ(α)).

Solution: The proof is a computation. Let

f(x) = anx
n + · · · a1x+ a0, a0, . . . , an ∈ F.

Then we have

σ(f(α)) = σ (anα
n + · · · a1α+ a0)

= σ (anα
n) + · · ·+ σ(a0)

= σ(an)σ(αn) + · · ·+ σ(a0)

= anσ(α)n + · · ·+ a1σ(α)1 + a0

= f(σ(α)).

We used the fact that σ fixes every element of F and that σ is a homomorphism.
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(b) Prove that σ permutes the set of roots of f(x) in K.

Solution: If f(α) = 0 then σ(f(α)) = σ(0) = 0, since σ is an automorphism. By the
previous part, 0 = f(σ(α)), so σ(α) is a root of f(x). Since σ is an automorphism of
K, α ∈ K implies σ(α) ∈ K.

Since σ is an automorphism of K it is an injective function on K. The set of roots of
f(x) in K is finite. We have seen that σ maps elements of this finite set to elements of
this finite set. An injective map from a finite set to itself is automatically a bijection.
So σ permutes the roots of f(x) in K.

5. (a) State the Primitive Element Theorem.

Solution: Suppose K/F is a finite separable extension. Then K/F is a simple extension.
That is, there exists some α ∈ K such that K = F (α).

(b) Define what if means for a field F of characteristic p to be perfect.

Solution: F is perfect if every element of F is a pth power in F . That is, for every
α ∈ F , there exists β ∈ F such that α = βp.

(c) Let F be a field. Define what it means for a field to be an algebraic closure of F .

Solution: F is an algebraic closure of F if F is algebraic over F and every polynomial
in F [x] splits completely in F [x].

6. Let F be any field. Prove that if K/F is a finite extension, then it is an algebraic extension.

Solution: Suppose [K : F ] = n. Let α ∈ K. We claim that α satisfies a polynomial in F [x]
of degree at most n.

Consider the n+ 1 elements of K : 1, α, α2, . . . , αn. Since K is an n-dimensional vector space
over F these elements must be linearly dependent over F . That is, there exist a0, . . . , an ∈ F
not all 0 such that

a0 · 1 + a1 · α+ · · ·+ an · αn = 0.

That is, α is a root of the polynomial

f(x) = anx
n + · · ·+ a1x+ a0 ∈ F [x].

Since α is a root of a polynomial in F [x], α is algebraic over F .

7. Determine the Galois group of the polynomial (x3 − x + 1)(x2 − 2) over Q as an abstract
group.

Solution: We first determine the Galois group of f1(x) = x3−x+1 over Q. This polynomial
is irreducible because it has no roots in Q. (By the Rational Root Theorem, the only possible
roots would be±1.) Therefore the Galois group of this polynomial is isomorphic to a transitive
subgroup of S3, so it is either S3 or A3

∼= Z/3Z.
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The discriminant of this polynomial is D = −4 · (−1)3 − 27 · 12 = −23. This is not a square
in Q. Therefore, Gal(f1) is not contained in A3, so it must be S3. Let E be the splitting field
of f1(x) over Q.

The splitting field of f2(x) = x2 − 2 over Q is Q(
√

2). The splitting field of f1(x)f2(x) is the
composite of E and Q(

√
2). By the Fundamental Theorem of Galois Theory, since there is a

unique subgroup of S3 of index 2, there is a unique quadratic subfield of E containing Q. It
is Q(

√
D) = Q(

√
−23).

It is clear that Q(
√

2) 6= Q(
√
−23). Therefore, E ∩Q(

√
2) = Q. We now apply that fact that

if K1,K2 are Galois extensions of F with K1 ∩K2 = F then Gal(K1K2/F ) ∼= Gal(K1/F )×
Gal(K2/F ). We conclude that the Galois group of f1(x)f2(x) is isomorphic to S3 × Z/2Z.

8. Let K be the splitting field over Q of x8 − 1.

(a) Find [K : Q].

Solution: We know that K = Q(ζ8) where ζ8 = e2πi/8. The minimal polynomial for ζ8
over Q is Φ8(x) = x4 + 1. Therefore, [K : Q] = 4.

It will be useful later in this problem, so we note that

e2πi/8 = cos
(π

4

)
+ i sin

(π
4

)
=

√
2 + i

√
2

2
.

(b) Describe the Galois group G = Gal(K/Q) both as an abstract group and as a set of
automorphisms.

Solution: We know that Gal(Q(ζn)/Q) ∼= (Z/nZ)∗ where the elements of Gal(Q(ζn)/Q)
are determined by where they send ζn. For each 1 ≤ a ≤ n with gcd(a, n) = 1 we have
an automorphism σa ∈ Gal(Q(ζn)/Q) where σa(ζn) = ζan. So in this example, we have
(Z/8Z)∗ ∼= Z/2Z× Z/2Z and

Gal(Q(ζ8)/Q) = {1 = σ1, σ3, σ5, σ7}.

(c) Find explicitly all subgroups of G and the corresponding subfields of K under the Galois
correspondence.

Solution: It is helpful to have a different description of K. It is clear Q(
√

2, i) is a
degree 4 Galois extension with G = Gal(Q(

√
2, i)/Q) = {1, σ, τ, στ} where

σ :

{√
2 7→ −

√
2

i 7→ i
τ :

{√
2 7→

√
2

i 7→ −i
.

It is clear that K = Q(
√

2+
√

2i) ⊆ Q(
√

2, i). None of {σ, τ, στ} fix the element
√

2+
√

2i,
so K corresponds to the trivial subgroup under the Galois correspondence. Therefore,
K = Q(

√
2, i).
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With this description it is easy to compute fixed fields. The fixed field of G is Q and the
fixed field of the trivial subgroup is Q(

√
2, i). The fixed field of 〈σ〉 is Q(i). The fixed

field of 〈τ〉 is Q(
√

2). The fixed field of 〈στ〉 is Q(i
√

2). Since these are all the subgroups
of G, these are all the fixed fields.

9. Determine the Galois group of the splitting field of the polynomial x3 + 2 over F3, over F7,
and over F11.

Solution: In order to answer this question we factor this cubic polynomial over F3, over F7,
and over F11. It is helpful to recall that a cubic is irreducible if and only if it does not have
any roots. We will also use the fact that any degree n extension of Fp is isomorphic to Fpn
and Fpn/Fp is Galois with Gal(Fpn/Fp) ∼= Z/nZ.

Since (a+ b)3 = a3 + b3 in F3 and 23 = 2 we have x3 + 2 = (x+ 2)3 over F3. Therefore, the
splitting field of x3 + 2 over F3 is F3 and the Galois group is trivial.

Taking cubes of the integers from 1 to 6 shows that x3+2 has no roots in F7, so it is irreducible.
Therefore, the splitting field is a degree 3 extension of F7. This is a Galois extension with
Galois group isomorphic to Z/3Z.

Taking cubes of small integers we see that 43 + 2 = 66 ≡ 0 (mod 11), so 4 is a root of x3 + 2
in F11. We have

x3 + 2 = (x− 4)(x2 + 4x+ 5).

We check that x2 + 4x+ 5 is irreducible in F11 by computing its discriminant:
√

42 − 4 · 5 =√
−4. We see that −4 is not a square in F11. Therefore the splitting field is degree 2 over

F11. Its Galois group is cyclic, isomorphic to Z/2Z.

10. Fix a prime p. For all positive integers m and n, let f(m,n) be the number of nonzero ring
homomorphisms from Fpm to Fpn .
Note: For this question you should assume that a ring homomorphism must take 1 to 1.

(a) What is f(m, 6)?

Solution: The kernel of a ring homomorphism is an ideal. The only ideals of a field
F are 0 and F . Since a ring homomorphism must take the identity to the identity, the
kernel cannot be F .

We need only count injective ring homomorphisms from Fpm to Fp6 . By the First Iso-
morphism Theorem, in this case Fpm is isomorphic to its image. Therefore, f(m, 6) is
nonzero implies that Fp6 has a subfield isomorphic to Fpm . This occurs if and only if
m | 6. In this case, there is a unique subfield of Fp6 isomorphic to Fpm .

Suppose m | 6. We need only count isomorphisms from Fpm to the unique subfield of
Fp6 isomorphic to Fpm . Such an isomorphism can be identified with an automorphism
of Fpm fixing Fp (since 1 is sent to 1 the isomorphism fixes Fp). Since Fpm/Fp is a Galois
extension with Galois group Z/mZ, there are exactly m such isomorphisms.
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In conclusion, f(m, 6) = m if m | 6 and f(m, 6) = 0 otherwise.

(b) What is f(6, n)?

Solution: As above, we need only count injective homomorphisms from Fp6 to Fpn . If
we have such a homomorphism Fp6 is isomorphic to its image. So f(6, n) is 0 unless Fpn
has a subfield isomorphic to Fp6 . We know that Fpn has such a subfield if and only if
6 | n, and in this case, there is a unique such subfield.

Suppose 6 | n. We need only count isomorphisms from Fp6 to this unique subfield of Fpn
isomorphic to Fp6 . Every such isormorphism can be identified with an automorphism of
Fp6 fixing Fp. As above, there are 6 such automorphisms.

So we see that f(6, n) = 6 if 6 | n and f(6, n) = 0 if 6 - n.

11. Prove that Q( 3
√

5) is not a subfield of any cyclotomic field over Q.

Solution: We note that Q( 3
√

5) is not a Galois extension of Q. The minimal polynomial of
3
√

5 over Q is x3 − 5 (this polynomial is Eisenstein at p = 5). We see that Q( 3
√

5) contains
one of these roots, but it does not contain the others: ζa5

3
√

5) where 1 ≤ a ≤ 4. We see this
because Q( 3

√
5) is a subfield of R, but these other roots are not real.

The cyclotomic field Q(ζn) is an abelian extension of Q, Gal(Q(ζn)/Q) ∼= (Z/nZ)∗. Subfields
of abelian extensions are Galois since subgroups of abelian groups are automatically normal.
Therefore, Q( 3

√
5) cannot be a subfield of Q(ζn) for any n.
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