Math 206C: Algebra

Final Exam Solutions
Thursday, June 10, 2021.

Problems

1. Let V be a vector space over Q of dimension at most p—2 where p is prime. Let T be a linear

transformation on V such that TP = I (where I denotes the identity linear transformation).
Show that T' = 1.
Solution: Since TP — I = 0 the minimal polynomial of T divides P — 1. We know that
2P —1=(x—1)(aP L+ - +x+1). Also, 2P +--- + 2 +1 = ®,(z) is irreducible in Q[z].
(We can prove this by applying Eisenstein’s criterion to ®,(x + 1), or we can note that we
proved that &, (z) is irreducible for all n.)

Since the dimension of V' is the degree of the characteristic polynomial of T'; which is greater
than or equal to the degree of the minimal polynomial of T, the only possibility for the
minimal polynomial of T"is x — 1. The unique linear transformation with minimal polynomial
x — 1 is the identity.

2. Determine up to similarity all 3 x 3 matrices in GL3(Q) of order exactly 6.

Solution: A matrix A € GL3(Q) with order dividing 6 satisfies A — I = 0. Therefore, the
minimal polynomial of A divides

P —1=@-)@?+r+)(z+ D —z+1).
The two quadratic polynomials here are irreducible in Q[x] since they are ®3(z) and ®g(x),

or you can see this by applying the quadratic formula.

The minimal polynomial of A, m4(x), divides the characteristic polynomial of A, c4(z), and
deg(ca(z)) = 3. Every invariant factor of A divides my(x), and since ca(z) is the product
of all the invariant factors, we cannot have m4(z) being one of the two irreducible quadratic
polynomials.

Therefore, m 4(x) must be one of the following possibilities:

(
(z—1)(z*+x+1)
(x+1) (2?2 +2+1)



f) (z—-1D(2%2-2+1)

(g) (x+1)(2? —x+1).
We are not looking to classify matrices of order dividing 6, but matrices of order exactly 6.
This means that m4(z) cannot divide 23 — 1 or 22 — 1. Therefore, m 4 (z) must be one of the
following possibilities:

(a) (z+ 1)z +x+1)

(b) (z—1)(@* -z +1)

(c) (x4 1)(2? —z +1).
For each of these three possibilities, we see that m4(x) = ca(z). The companion matrix

of m(x) is an element in the corresponding similarity class. We conclude that every A €
GL3(Q) of order exactly 6 is similar to one of:

00 —1 00 1 00 —1
10 -2, 1o -2, 10 0
01 -2 01 2 01 0

. Let F C K C L be fields and suppose that L/F is finite. Prove that [L: F] = [L: K|-[K: F].

Solution: We first note that L/F being finite implies that L/K is finite and K/F is finite.
Suppose [K: F] =m and [L: K] = n. Let {o;}i=1,..m be a basis for K/F and {8;}j=1,.n
be a basis for L/K. We show that {a;3;} where i € [1,m] and j € [1,n] is a basis for L/F.

Let v € L. Since {f;};=1,..n is a basis for L/K, we know that v can be written uniquely as

7777

n
v = ijﬁj, where b; € K.
j=1
Since {a;}i—1,..m is a basis for K/F', each b; can be written uniquely as
m
b = Zcijozi, where ¢;; € F.
i=1
Using these expressions for b; we see that

n

=) bif = Z > cijaib;.

j=1 j=11i=1

We see that {«;[;} span L as a vector space over F.



To see that they are linearly independent, note that since {c;}i—1,. m is a basis for K/F, the
only solution to
m
0= Z CiQ,
i=1

is given by ¢1,..., ¢y = 0. Since {f;}j=1,...» is a basis for L/K, the only solution to

0=> b;B;
j=1

is given by b1, ...,b, = 0. Therefore,

implies that for every j

(i CijOéZ') = 0.
i=1

This implies that for fixed j, each ¢;; = 0, so all ¢;; = 0.

. Let K/F be a field extension and o € Aut(K/F) be an automorphism of K fixing F'.
Suppose f(z) € Fz] and a € K.

(a) Prove that o(f(a)) = f(o(a)).

Solution: The proof is a computation. Let
f(x)=apz™ + - a1z +ap, ag,...,an € F.
Then we have

o(f(a)) = o(apa”™ + - a1+ agp)

o (ana™) + -+ + o(ao)
(an)U(a”) -+ +o(ao)
ano (o ”+---+a10(a)1+a0

(@)
= [flo(a)).

We used the fact that o fixes every element of F' and that ¢ is a homomorphism.

Il
)



(b) Prove that o permutes the set of roots of f(z) in K.

Solution: If f(a) = 0 then o(f(a)) = o(0) = 0, since ¢ is an automorphism. By the
previous part, 0 = f(o(a)), so o(a) is a root of f(x). Since o is an automorphism of
K, a € K implies o(a) € K.

Since ¢ is an automorphism of K it is an injective function on K. The set of roots of
f(z) in K is finite. We have seen that o maps elements of this finite set to elements of
this finite set. An injective map from a finite set to itself is automatically a bijection.
So o permutes the roots of f(z) in K.

5. (a) State the Primitive Element Theorem.
Solution: Suppose K/F is a finite separable extension. Then K/F is a simple extension.
That is, there exists some a € K such that K = F(«).
(b) Define what if means for a field F' of characteristic p to be perfect.
Solution: F is perfect if every element of F is a p'" power in F. That is, for every
« € F, there exists § € F such that a = gP.
(c) Let F be a field. Define what it means for a field to be an algebraic closure of F.

Solution: F is an algebraic closure of F if F is algebraic over F and every polynomial
in F[z] splits completely in F|x].

6. Let F' be any field. Prove that if K/F is a finite extension, then it is an algebraic extension.

Solution: Suppose [K: F] =n. Let o € K. We claim that « satisfies a polynomial in F[z]
of degree at most n.

Consider the n+ 1 elements of K : 1,a,a?,...,a". Since K is an n-dimensional vector space

over F' these elements must be linearly dependent over F'. That is, there exist ag,...,a, € F
not all 0 such that
ap-l14+a-a+---+ay-a"=0.

That is, « is a root of the polynomial
f(z) =apz™ + -+ a1z + ap € Flz].
Since « is a root of a polynomial in F[z], « is algebraic over F.

7. Determine the Galois group of the polynomial (z3 — x + 1)(z% — 2) over Q as an abstract
group.
Solution: We first determine the Galois group of fi(z) = 23 — 2+ 1 over Q. This polynomial
is irreducible because it has no roots in Q. (By the Rational Root Theorem, the only possible

roots would be £1.) Therefore the Galois group of this polynomial is isomorphic to a transitive
subgroup of Ss, so it is either S5 or As = Z/37Z.



The discriminant of this polynomial is D = —4 - (—1)3 — 27 - 12 = —23. This is not a square
in Q. Therefore, Gal(f1) is not contained in As, so it must be S3. Let E be the splitting field
of fi(z) over Q.

The splitting field of fo(z) = 22 — 2 over Q is Q(+/2). The splitting field of fi(x)f2(z) is the
composite of F and Q(v/2). By the Fundamental Theorem of Galois Theory, since there is a
unique subgroup of S3 of index 2, there is a unique quadratic subfield of E containing Q. It
is Q(vD) = Q(v—23).

It is clear that Q(v/2) # Q(v/—23). Therefore, ENQ(v/2) = Q. We now apply that fact that
if K, Ky are Galois extensions of F' with K; N Ky = F then Gal(K1K3/F) = Gal(K;/F) x
Gal(K3/F). We conclude that the Galois group of fi(x)f2(x) is isomorphic to S3 x Z/2Z.

8. Let K be the splitting field over Q of 28 — 1.

(a)

Find [K: Q).

Solution: We know that K = Q((g) where (g = €2™/8. The minimal polynomial for (g
over Q is ®g(z) = 2* 4+ 1. Therefore, [K: Q] = 4.

It will be useful later in this problem, so we note that

e2™/8 — cos (%) + 4 sin (%) = \@—;Z\@

Describe the Galois group G = Gal(K/Q) both as an abstract group and as a set of
automorphisms.

Solution: We know that Gal(Q(¢,)/Q) = (Z/nZ)* where the elements of Gal(Q(¢{,)/Q)
are determined by where they send (,. For each 1 < a < n with ged(a,n) = 1 we have
an automorphism o, € Gal(Q(¢,)/Q) where 04(¢,) = (2. So in this example, we have
(Z/SZ)* = 7.,)27 x 7./2Z and

Gal(Q(¢s)/Q) = {1 =01, 03,05,07}.

Find explicitly all subgroups of GG and the corresponding subfields of K under the Galois
correspondence.

Solution: It is helpful to have a different description of K. It is clear Q(\/i,z’) is a
degree 4 Galois extension with G = Gal(Q(v/2,4)/Q) = {1,0, 7,07} where

V2 = V2 V2 =2
E PR [ PR

It is clear that K = Q(v/2+v/2i) C Q(v/2, i). None of {0, 7,07} fix the element V24+/2i,
so K corresponds to the trivial subgroup under the Galois correspondence. Therefore,

K =Q(V2,17).



9.

10.

With this description it is easy to compute fixed fields. The fixed field of G is Q and the
fixed field of the trivial subgroup is Q(v/2,i). The fixed field of (o) is Q(i). The fixed
field of (1) is Q(v/2). The fixed field of (o7) is Q(iv/2). Since these are all the subgroups
of GG, these are all the fixed fields.

Determine the Galois group of the splitting field of the polynomial z3 + 2 over F3, over Fr,
and over 1.

Solution: In order to answer this question we factor this cubic polynomial over Fg, over F7,
and over [F11. It is helpful to recall that a cubic is irreducible if and only if it does not have
any roots. We will also use the fact that any degree n extension of I, is isomorphic to [~
and F,n /IF, is Galois with Gal(IF,n /IF,) = Z/nZ.

Since (a + b)® = a® + b3 in F3 and 2% = 2 we have 2> + 2 = (z + 2)3 over F3. Therefore, the
splitting field of 23 + 2 over F3 is F3 and the Galois group is trivial.

Taking cubes of the integers from 1 to 6 shows that 2342 has no roots in F7, so it is irreducible.
Therefore, the splitting field is a degree 3 extension of F7. This is a Galois extension with
Galois group isomorphic to Z/3Z.

Taking cubes of small integers we see that 4% +2 = 66 =0 (mod 11), so 4 is a root of 2% + 2
in F11. We have
23+ 2= (x —4)(2® + 42 + 5).

We check that x? 4 4z + 5 is irreducible in F1; by computing its discriminant: /42 —4 -5 =
v —4. We see that —4 is not a square in Fi;. Therefore the splitting field is degree 2 over
Fq1. Its Galois group is cyclic, isomorphic to Z/27Z.

Fix a prime p. For all positive integers m and n, let f(m,n) be the number of nonzero ring
homomorphisms from Fpm to Fyn.
Note: For this question you should assume that a ring homomorphism must take 1 to 1.

(a) What is f(m,6)?
Solution: The kernel of a ring homomorphism is an ideal. The only ideals of a field
F are 0 and F. Since a ring homomorphism must take the identity to the identity, the
kernel cannot be F'.
We need only count injective ring homomorphisms from Fym to Fpe. By the First Iso-
morphism Theorem, in this case Fpm= is isomorphic to its image. Therefore, f(m,6) is
nonzero implies that Fp¢ has a subfield isomorphic to Fpm. This occurs if and only if
m | 6. In this case, there is a unique subfield of [F,6 isomorphic to Fym.
Suppose m | 6. We need only count isomorphisms from F,= to the unique subfield of
F,6 isomorphic to Fym. Such an isomorphism can be identified with an automorphism
of Fm fixing F), (since 1 is sent to 1 the isomorphism fixes F). Since Fym /IF,, is a Galois
extension with Galois group Z/mZ, there are exactly m such isomorphisms.



In conclusion, f(m,6) =m if m |6 and f(m,6) = 0 otherwise.

(b) What is f(6,n)?
Solution: As above, we need only count injective homomorphisms from Fpe to Fpn. If
we have such a homomorphism F e is isomorphic to its image. So f(6,7) is 0 unless Fy»
has a subfield isomorphic to F,s. We know that F,» has such a subfield if and only if
6 | n, and in this case, there is a unique such subfield.
Suppose 6 | n. We need only count isomorphisms from 6 to this unique subfield of Fyn
isomorphic to Fp¢. Every such isormorphism can be identified with an automorphism of
F,e fixing ;. As above, there are 6 such automorphisms.

So we see that f(6,n) =6 if 6 | n and f(6,n) =0 if 6 { n.

11. Prove that Q(+/5) is not a subfield of any cyclotomic field over Q.

Solution: We note that Q(+/5) is not a Galois extension of Q. The minimal polynomial of
/5 over Qis 2 — 5 (this polynomial is Eisenstein at p = 5). We see that Q(%) contains
one of these roots, but it does not contain the others: (¢ \3/5) where 1 < a < 4. We see this
because Q(+/5) is a subfield of R, but these other roots are not real.

The cyclotomic field Q(¢,) is an abelian extension of Q, Gal(Q(¢,)/Q) = (Z/nZ)*. Subfields
of abelian extensions are Galois since subgroups of abelian groups are automatically normal.

Therefore, Q(+v/5) cannot be a subfield of Q((,) for any n.



