Math 206C: Algebra
 Midterm 1

Friday, April 23, 2021.

- You have 90 minutes for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used.

Do not use a calculator.

- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.
(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	
$\mathbf{1}$ (3 Points)	
$\mathbf{2}$ (3 Points)	
$\mathbf{3}$ (6 Points)	
$\mathbf{4}$ (8 Points)	
$\mathbf{5}$ (8 Points)	
Total	

Problems
$\mathbf{6}$ (8 Points)
$\mathbf{7}$ (10 Points)
$\mathbf{8}$ (8 Points)
$\mathbf{9}$ (8 Points)
$\mathbf{1 0}$ (10 Points)
Total

Problems

1. True or False: Let A be any $n \times n$ matrix with entries in a field F. Then A is similar to its transpose, A^{T}.
2. True or False: Let F be any field and $p(x)$ be any monic polynomial of degree n in $F[x]$. There exists an $n \times n$ matrix A with entries in F that has minimal polynomial equal to $p(x)$.
3. (a) Let F be a field and K an extension of F. Define what it means for $\alpha \in K$ to be algebraic over F.
(b) Define what it means for K / F to be algebraic.
(c) Suppose $\alpha \in K$ is algebraic over F. Define the minimal polynomial of α over $F, m_{\alpha, F}(x)$.
4. Let A be an $n \times n$ matrix with entries in a field F.
(a) Define the trace of A.
(b) Define what it means for A to be nilpotent.
(c) Prove that the trace of a nilpotent $n \times n$ matrix with entries in F is 0 .
5. Suppose $A \in \operatorname{Mat}_{3}(\mathbb{C})$ has eigenvalues -1 and 2 (and no other eigenvalues). Let $c_{A}(x) \in \mathbb{C}[x]$ denote the characteristic polynomial of A, and $m_{A}(x) \in \mathbb{C}[x]$ denote the minimal polynomial.
(a) Which pairs $\left(c_{A}(x), m_{A}(x)\right)$ can occur?
(b) For each pair that can occur, give an explicit example of a matrix A with those characteristic and minimal polynomials.
6. Find two matrices with entries in \mathbb{C} that have the same characteristic polynomials and minimal polynomials but different Jordan canonical forms. Fully justify your answer.
7. Prove that for every $n \geq 2$ there exists an $n \times n$ nonsingular matrix $A \neq \pm I$ over \mathbb{F}_{3} such that $I+A^{2}$ is its own inverse.
8. Prove that the characteristic of a finite field is prime.
9. Suppose K / F is a field extension of degree $[K: F]=p$ where p is prime.

Show that for any $\alpha \in K$, either $F(\alpha)=F$ or $F(\alpha)=K$.
10. Let F be a field and let A and B be non-singular 3×3 matrices over F. Suppose that $B^{-1} A B=2 A$.
(a) Find the characteristic of F.
(b) If n is a positive or negative integer not divisible by 3 , prove that the matrix A^{n} has trace 0 .

