
Math 206C: Algebra
Midterm 1 Solutions

1. True or False: Let A be any n× n matrix with entries in a field F .
Then A is similar to its transpose, AT .

Solution: This is true because A and AT have the same invariant factors. We can determine
the invariant factors of A by diagonalizing the matrix xI−A using elementary row and column
operations. In order to diagonalize xI−AT , we do the same sequence of operations, but every
time we did a row operation to A we do the corresponding column operation to xI−AT , and
every time we did a column operation to xI −A, we do the corresponding row operation.

2. True or False: Let F be any field and p(x) be any monic polynomial of degree n in F [x].
There exists an n×n matrix A with entries in F that has minimal polynomial equal to p(x).

Solution: This is true. For example, the companion matrix of p(x) has this property.

3. (a) Let F be a field and K an extension of F .
Define what it means for α ∈ K to be algebraic over F .

Solution: α is algebraic over F if there exists a nonzero polynomial f(x) ∈ F [x] with
f(α) = 0.

(b) Define what it means for K/F to be algebraic.

Solution: K/F is an algebraic extension if every element α ∈ K is algebraic over F .

(c) Suppose α ∈ K is algebraic over F . Define the minimal polynomial of α over F, mα,F (x).

Solution: mα,F (x) is the unique monic irreducible polynomial in F [x] withmα,F (α) = 0.

4. Let A be an n× n matrix with entries in a field F .

(a) Define the trace of A.

Solution: The trace of A is the sum of the diagonal entries of A.

(b) Define what it means for A to be nilpotent.

Solution: A is nilpotent if there is a positive integer k such that Ak = 0

(c) Prove that the trace of a nilpotent n× n matrix with entries in F is 0.

Solution: We showed in lecture that the trace of A is the negative of the xn−1 coefficient
of the characteristic polynomial of A. Since A is nilpotent, its minimal polynomial is
a power of x. Since the characteristic polynomial divides some power of the minimal
polynomial, cA(x) = xn. So the trace of A is 0.

5. Suppose A ∈ Mat3(C) has eigenvalues −1 and 2 (and no other eigenvalues). Let cA(x) ∈ C[x]
denote the characteristic polynomial of A, and mA(x) ∈ C[x] denote the minimal polynomial.
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(a) Which pairs (cA(x),mA(x)) can occur?

Solution: The characteristic polynomial cA(x) has degree 3. Its roots are the eigenvalues
of A. So it has −1 and 2 as roots, and no others. Therefore, (x + 1)(x − 2) divides
cA(x), and since it has degree 3, there must be one other linear factor. Therefore, the
characteristic polynomial is either (x+ 1)2(x− 2) or (x+ 1)(x− 2)2.

The minimal polynomial divides the characteristic polynomial and the characteristic
polynomial divides some power of the minimal polynomial. Therefore, every irreducible
factor of the characteristic polynomial (in our case, x+1 and x−2) must divide the min-
imal polynomial. Therefore, we get the following list of possibilities for (cA(x),mA(x)):

i. ((x+ 1)2(x− 2), (x+ 1)2(x− 2)),

ii. ((x+ 1)2(x− 2), (x+ 1)(x− 2)),

iii. ((x+ 1)(x− 2)2, (x+ 1)(x− 2)2),

iv. ((x+ 1)(x− 2)2, (x+ 1)(x− 2)).

(b) For each pair that can occur, give an explicit example of a matrix A with those charac-
teristic and minimal polynomials.

Solution: We first give the invariant factors for each of the possibilities described above
and then give their Jordan canonical forms:

i. (x+ 1)2(x− 2),

 −1 1 0
0 −1 0
0 0 2


ii. (x+ 1), (x+ 1)(x− 2),

 −1 0 0
0 −1 0
0 0 2


iii. (x+ 1)(x− 2)2,

 −1 0 0
0 2 1
0 0 2


iv. (x− 2), (x+ 1)(x− 2),

 −1 0 0
0 2 0
0 0 2

.

6. Find two matrices with entries in C having the same characteristic polynomials and minimal
polynomials but different Jordan canonical forms. Fully justify your answer.

Solution: The Jordan canonical form of a matrix is determined by its invariant factors. We
need only give two matrices that have the same characteristic and minimal polynomial but
different invariant factors. We consider two sets of possible invariant factors

(x− 1), (x− 1), (x− 1)2, and (x− 1)2, (x− 1)2.
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The minimal polynomial is the largest invariant factor, which is (x − 1)2 in both cases, and
the characteristic polynomial is the product of all of the invariant factors, which is (x − 1)4

in both cases. A matrix with the first set of invariant factors is
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


and a matrix with the second set of invariant factors is

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

We note that both of these matrices are in Jordan canonical form.

7. Prove that for every n ≥ 2 there exists an n × n nonsingular matrix A 6= ±I over F3 such
that I +A2 is its own inverse.

Note: A few people found the wording of this problem confusing and instead interpreted it
as asking for a matrix A such that A−1 = A2 + I. I apologize for the confusion. I will try to
make thing kind of thing clearer in the future.

Solution: I +A2 is its own inverse if and only if (I +A2)2 = A4 + 2A2 + I = I, which means
A4 + 2A2 = 0. This occurs if and only if the minimal polynomial of A divides x2(x2 + 2) =
x2(x+ 1)(x− 1) in F3[x].

We note that A is invertible if and only if 0 is not an eigenvalue of A, which occurs if and
only if x does not divide the characteristic polynomial of A. Since the minimal polynomial
divides the characteristic polynomial of A, the only possibilities for the minimal polynomial
of A are (x + 1), (x − 1) or (x + 1)(x − 1). The only A with minimal polynomial x − 1 is I
and the only A with minimal polynomial x+ 1 is −I.

We need only show that for each n ≥ 2 there is an n × n matrix with minimal polynomial
(x−1)(x+1). We can take the matrix with invariant factors (x−1), . . . , (x−1), (x−1)(x+1),
where there are n − 2 copies of x − 1 at the beginning. An example of a matrix with these
invariant factors is the one that is the (n−2)× (n−2) identity matrix in the upper left block,
and ( 0 1

1 0 ) in the bottom 2× 2 corner.

Note: Some people solved this problem more directly by finding a matrix A such that
A2 + I = −I. Over F3 this means that A2 = I. So we need only find a matrix that squares
to I that is not ±I. One choice is to take a diagonal matrix with 1 and −1 on the diagonal,
at least one of each.
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8. Prove that the characteristic of a finite field is prime.

Solution: Let F be a finite field. Since F is finite, the elements 1, 1+1, 1+1+1, . . . cannot be
distinct. Let n be the smallest positive integer such that n·1 is an element we have seen before.
Then n ·1 = m ·1 for some positive integer m < n. This implies n ·1−m ·1 = (n−m) ·1 = 0.
So the characteristic of F is finite.

Suppose the characteristic of F is n. If n = a · b where a, b > 1, then

n · 1 = (a · 1) · (b · 1) = 0,

but since a ·1 and b ·1 are elements of a field, we must have a ·1 = 0 or b ·1 = 0, contradicting
the assumption that n was the smallest positive integer such that n · 1 = 0.

9. Suppose K/F is a field extension of degree [K : F ] = p where p is prime. Show that for any
α ∈ K, either F (α) = F or F (α) = K.

Solution: We see that F ⊂ F (α) ⊂ K since F (α) is the smallest extension of F containing
α and F and K is some extension of F containing F and α. Since degrees of field extensions
are multiplicative, we have

p = [K : F ] = [K : F (α)] · [F (α) : F ].

Since p is prime and [K : F (α)], [F (α) : F ] are positive integers, the only possibilities are
[K : F (α)] = p, [F (α) : F ] = 1, in which case F (α) = F , and [K : F (α)] = 1, [F (α) : F ] = p,
in which case F (α) = K.

10. Let F be a field and let A and B be non-singular 3 × 3 matrices over F . Suppose that
B−1AB = 2A.

(a) Find the characteristic of F .

Solution: A is similar to 2A, so in particular, they have the same determinant. We
note that det(2A) = 23 det(A), so we must have 23 = 1 in F . This means that the
characteristic of F must be 7.

(b) If n is a positive or negative integer not divisible by 3, prove that the matrix An has
trace 0.

Solution: Similar n × n matrices have the same characteristic polynomial, so they
have the same trace (since the trace is the negative xn−1 coefficient of the characteristic
polynomial).

Since
(B−1AB)(B−1AB) = B−1A2B = (2A)(2A) = 4A2,

we see that A2 is similar to 4A2.

Similarly, A3 is similar to 8A3 = A3, but this tells us nothing.
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In general, we see that Ak is similar to 2kAk. (This is true for positive or negative
integers.)

This means that tr(Ak) = 2ktr(Ak), which is possible only when 2k = 1 in F or when
tr(A) = 0. Since the characteristic of F is 7, we see that 2k = 1 in F if and only if k is
divisible by 3. Therefore, we see that when k is not divisible by 3, tr(Ak) = 0.

Note: This problem came from an old qualifying exam where it had a part (c): Prove that
the characteristic polynomial of A is X3 − a for some a ∈ F . I will give the solution here
because it’s pretty neat and may be useful for you to use this idea in the future.

Solution: Let

cA(x) = x3 + a2x
2 + a1x+ a0 = (x− λ1)(x− λ2)(x− λ3).

We showed in the previous part that −a2 = tr(A) = λ1 + λ2 + λ3 = 0. We now need only
show that a1 = 0.

We have a1 = (λ1λ2 + λ1λ3 + λ2λ3). Note that

0 = (λ1 + λ2 + λ3)
2 = λ21 + λ22 + λ23 + 2(λ1λ2 + λ1λ3 + λ2λ3) = λ21 + λ22 + λ23 + 2a1.

We since the eigenvalues of A2 are λ21, λ
2
2, λ

2
3, we see that tr(A2) = λ21 + λ22 + λ23. We showed

in the previous part that tr(A2) = 0 and we conclude that 2a1 = 0, so a1 = 0.
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