Math 206C: Algebra Midterm 2: Solutions Friday, May 21, 2021.

Problems

1. Prove that the polynomial $f(x) = 1 + \frac{x}{1} + \frac{x^2}{2} + \dots + \frac{x^n}{n!} \in \mathbb{Q}[x]$ has no multiple roots in \mathbb{C} . Solution: A polynomial f(x) has α as a multiple root if and only if α is a root of both f(x) and its derivative f'(x). We have

$$f'(x) = 1 + \frac{x}{1} + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!}$$

We see that if α is a root of both f(x) and f'(x) then

$$f(\alpha) - f'(\alpha) = \frac{\alpha^n}{n!} = 0,$$

which implies $\alpha = 0$. But clearly, $f(\alpha) = 1 \neq 0$. Therefore, f(x) does not have any multiple roots in \mathbb{C} .

2. Suppose that V is a finite dimensional vector space and $T: V \to V$ is a linear transformation that has characteristic polynomial which is irreducible over \mathbb{Q} .

Show that the matrix of T (in any basis of V) can be diagonalized **over the field** \mathbb{C} .

Solution: We recall that if A is a matrix with entries in a field F that contains all of the eigenvalues of A, then A can be diagonalized over F if all of the eigenalues of A are distinct. Let A be the matrix of T with respect to some basis \mathcal{B} of V. The characteristic polynomial of T is the characteristic polynomial of A, $c_A(x)$. This is an irreducible polynomial in $\mathbb{Q}[x]$.

If F is a perfect field, every irreducible polynomial in F[x] is separable over F. Every field of characteristic 0 is perfect. So $c_A(x)$ has distinct roots in a algebraic closure of \mathbb{Q} .

Recall that \mathbb{C} is algebraically closed, and $\overline{\mathbb{Q}} \subset \mathbb{C}$ is an algebraic closure of \mathbb{Q} . We conclude that $c_A(x)$ has distinct roots in \mathbb{C} , so A can be diagonalized over \mathbb{C} .

3. Factor $x^4 + 1 \in F[x]$ and find the splitting field over F if the ground field F is:

(a)
$$\mathbb{Q}$$
, (b) \mathbb{F}_2 , (c) \mathbb{R} .

Solution: We note that $x^4 + 1 = \Phi_4(x)$ and we know that $\Phi_n(x)$ is irreducible in $\mathbb{Q}[x]$ for any n. The roots of $x^4 + 1$ are the primitive 8th roots of unity. One such root is

$$\zeta_8 = e^{2\pi i/8} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

We see that the splitting field of this polynomial is $\mathbb{Q}(\zeta_8)$.

Over \mathbb{F}_2 we see that

$$x^{4} + 1 = (x^{2})^{2} + 1^{2} = (x^{2} + 1)^{2} = ((x + 1)^{2})^{2} = (x + 1)^{4}.$$

The splitting field over \mathbb{F}_2 of this polynomial is \mathbb{F}_2 .

We see that the splitting field of $x^4 + 1$ over \mathbb{R} includes ζ_8 , which means it also includes $\zeta_8^2 = i$. So this splitting field includes $\mathbb{R}(i) = \mathbb{C}$. Since \mathbb{C} is algebraically closed, it contains all of the roots of $x^4 + 1$. So \mathbb{C} is the splitting field of $x^4 + 1$ over \mathbb{R} .

Since \mathbb{C} is a quadratic extension of a field of characteristic 0, it is a Galois extension. The nontrivial Galois element given by complex conjugation. The roots of $m_{\zeta_8,\mathbb{R}}(x)$ are the distinct Galois conjugates of ζ_8 . Therefore,

$$m_{\zeta_8,\mathbb{R}}(x) = (x - \zeta_8)(x - \overline{\zeta_8}) = x - (\zeta_8 + \overline{\zeta_8})x + \zeta_8\overline{\zeta_8}.$$

It is helpful to note that $\overline{\zeta_8} = \zeta_8^7$, and using the expression for ζ_8 given above, we see that

$$m_{\zeta_8,\mathbb{R}}(x) = x^2 - \sqrt{2}x + 1.$$

The remaining two roots of $x^4 + 1$ are $-\zeta_8$ and $-\overline{\zeta_8}$. So,

$$m_{\zeta_8^3,\mathbb{R}}(x) = (x+\zeta_8)(x+\overline{\zeta_8}) = x^2 + \sqrt{2}x + 1.$$

So

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1).$$

4. Let p be prime and $\mathbb{F}_p \subset \mathbb{F}_{p^n}$ be a degree n > 1 extension of finite fields. Consider the Frobenius automorphism $\Phi \colon \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ sending α to α^p . Show that Φ is \mathbb{F}_p -linear, that its minimal polynomial $m_{\Phi}(x)$ has degree n, and then compute the minimal polynomial. **Solution**: We first note that for any $\alpha, \beta \in \mathbb{F}_p$, we have

$$\Phi(a+b) = (a+b)^p = a^p + b^p.$$

This statement holds in any ring of characteristic p, the proof uses the Binomial Theorem:

$$(a+b)^{p} = \sum_{k=0}^{p} {p \choose k} a^{k} b^{p-k} = a^{p} + b^{p} + \sum_{k=1}^{p-1} {p \choose k} a^{k} b^{p-k}.$$

We now need only note that for each $k \in \{1, \ldots, p-1\}$, we have $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ is divisible by p because the numerator is, but the denominator is the product of two terms, neither of which is divisible by p. We now note that \mathbb{F}_{p^n} is a vector space over \mathbb{F}_p with the scalar multiplication given by the standard multiplication in \mathbb{F}_{p^n} . For any $c \in \mathbb{F}_p$ and $\alpha \in \mathbb{F}_{p^n}$ we have

$$\Phi(c \cdot \alpha) = c^p \cdot \alpha^p = c \cdot \Phi(\alpha),$$

since $c^p = c$. Therefore, Φ is \mathbb{F}_p -linear.

Suppose that

$$m_{\Phi}(x) = x^m + a_{m-1}x^{m-1} + \dots + a_1x + a_0 \in \mathbb{F}_p[x].$$

Then

$$\Phi^m + a_{m-1}\Phi^{m-1} + \dots + a_1\Phi + a_0I = 0$$

as a linear transformation from $\mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$. That is,

$$\alpha^{p^m} + a_{m-1}\alpha^{p^{m-1}} + \dots + a_1\alpha^p + a_0 = 0$$

for all $\alpha \in \mathbb{F}_{p^n}$. This is not possible if m < n, because then we would have a nonzero polynomial

$$x^{p^m} + a_{m-1}x^{p^{m-1}} + \dots + a_1x^p + a_0$$

of degree p^m with at least p^n roots in \mathbb{F}_{p^n} .

Therefore, we see that the degree of $m_{\Phi}(x)$ is at least n. We see that it is exactly n by noting that

$$\alpha^{p^n} - \alpha = 0$$

for all $\alpha \in \mathbb{F}_{p^n}$, so $\Phi^n - I = 0$ as a linear transformation on \mathbb{F}_{p^n} . This implies $m_{\Phi}(x) = x^n - 1$.

5. Let n be a positive integer. Prove that the n^{th} cyclotomic polynomial $\Phi_n(x)$ has integer coefficients.

Solution: The n^{th} cyclotomic polynomial $\Phi_n(x)$ is the monic polynomial whose roots are the primitive n^{th} roots of unity. We prove this statement by induction on n. For n = 1 we note that $\Phi_1(x) = x - 1 \in \mathbb{Z}[x]$.

We recall that $x^n - 1 = \prod_{d|n} \Phi_d(x)$. We see that this is true by comparing the roots on both sides of the equation and noting that every n^{th} root of unity is a primitive d^{th} root of unity for some $d \mid n$ (d is the order of this root in the group of n^{th} roots of unity).

We assume that the statement is true for all m < n. We see that

$$x^{n} - 1 = \Phi_{n}(x) \cdot \prod_{\substack{d \mid n \\ d \neq n}} \Phi_{d}(x).$$

Let $g(x) = \prod_{\substack{d|n \\ d \neq n}} \Phi_d(x)$.

By induction, $g(x) \in \mathbb{Z}[x]$. Therefore, we see that g(x) divides $x^n - 1$ in $\mathbb{Q}(\zeta)[x]$. By uniqueness of the remainder when applying the division algorithm in field extensions, since $x^n - 1$, $g(x) \in \mathbb{Q}[x]$, we see that $g(x) \mid x^n - 1$ in $\mathbb{Q}[x]$. This proves that $\Phi_n(x) \in \mathbb{Q}[x]$.

We note that $x^n - 1, \Phi_n(x)$, and g(x) are all monic polynomials. By Gauss' lemma, we conclude that in fact, $\Phi_n(x) \in \mathbb{Z}[x]$ (since the other two polynomials are).

6. Let p be an odd prime. How many subfields of $\mathbb{F}_{p^{12}}$ are there?

Solution: For each p and each n, \mathbb{F}_{p^n} is a Galois extension of \mathbb{F}_p with $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \cong \mathbb{Z}/n\mathbb{Z}$. Every subfield of \mathbb{F}_{p^n} contains its prime subfield \mathbb{F}_p . By the Galois correspondence there is a bijection between subfields E of \mathbb{F}_{p^n} containing \mathbb{F}_p and subgroups of $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$. Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in bijection with divisors d of n. So, the number of subfields of \mathbb{F}_{p^n} is the number of divisors of n. The divisors of 12 are $\{1, 2, 3, 4, 6, 12\}$, so there are 6 subfields of $\mathbb{F}_{p^{12}}$.

7. Does there exist a field F and an extension K/F with [K:F] = 2 that is **not** a Galois extension? Either give an example and explain why it has this property, or prove that no example exists.

Solution: We proved that a degree 2 extension of a field F of characteristic not equal to 2 is Galois because it is a splitting over F of a separable polynomial over F. So, we want to find a quadratic polynomial over a field of characteristic 2 that is not separable.

Consider $F = \mathbb{F}_2(u)$ and $f(x) = x^2 - u \in F[x]$. This polynomial is irreducible in F[x] since it is Eisenstein at u (really, Eisenstein's criterion shows that it is irreducible in $\mathbb{F}_2[u][x]$ and then Gauss' lemma shows that it is irreducible in F[x]). This polynomial is not separable since f'(x) = 2x = 0. Therefore, the field we get by adjoining a root of this polynomial to $F, F(u^{1/2}) = \mathbb{F}_2(u^{1/2})$ is not separable over F, so it is not a Galois extension of F.

8. Let $K = \mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$ and $F = \mathbb{Q}(\sqrt{-3})$. Is K/F a Galois extension? Justify your answer. Solution: This is a Galois extension. First we note that $\zeta_3 = \frac{-1+\sqrt{-3}}{2}$, so $K = \mathbb{Q}(\zeta_3, \sqrt[3]{2})$. We see that K is a splitting field of $x^3 - 2$ over \mathbb{Q} by noting that it contains all of the roots of $x^3 - 2$, and that $\mathbb{Q}(\sqrt[3]{2})$ does not.

We now need only note that if K/F is a Galois extension, then for any subfield E of K containing F, K/E is a Galois extension.

9. Let K be a field and H be a subgroup of Aut(K). Recall that K^H denotes the subfield of K consisting of elements fixed by every σ ∈ H. Is it true that H ⊆ Aut(K/K^H)? Either prove this statement or give a counterexample.
Solution: Let σ ∈ H. It is clear that σ is an automorphism of K so we need only show

Solution: Let $\sigma \in H$. It is clear that σ is an automorphism of K so we need only show that σ fixes every element of K^H . If $\alpha \in K^H$, then α is fixed by every element of H, so in particular, $\sigma(\alpha) = \alpha$.