Math 206C: Algebra
 Midterm 2: Solutions

Friday, May 21, 2021.

Problems

1. Prove that the polynomial $f(x)=1+\frac{x}{1}+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n!} \in \mathbb{Q}[x]$ has no multiple roots in \mathbb{C}.

Solution: A polynomial $f(x)$ has α as a multiple root if and only if α is a root of both $f(x)$ and its derivative $f^{\prime}(x)$. We have

$$
f^{\prime}(x)=1+\frac{x}{1}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n-1}}{(n-1)!}
$$

We see that if α is a root of both $f(x)$ and $f^{\prime}(x)$ then

$$
f(\alpha)-f^{\prime}(\alpha)=\frac{\alpha^{n}}{n!}=0
$$

which implies $\alpha=0$. But clearly, $f(\alpha)=1 \neq 0$. Therefore, $f(x)$ does not have any multiple roots in \mathbb{C}.
2. Suppose that V is a finite dimensional vector space and $T: V \rightarrow V$ is a linear transformation that has characteristic polynomial which is irreducible over \mathbb{Q}.
Show that the matrix of T (in any basis of V) can be diagonalized over the field \mathbb{C}.
Solution: We recall that if A is a matrix with entries in a field F that contains all of the eigenvalues of A, then A can be diagonalized over F if all of the eigenalues of A are distinct. Let A be the matrix of T with respect to some basis \mathcal{B} of V. The characteristic polynomial of T is the characteristic polynomial of $A, c_{A}(x)$. This is an irreducible polynomial in $\mathbb{Q}[x]$.
If F is a perfect field, every irreducible polynomial in $F[x]$ is separable over F. Every field of characteristic 0 is perfect. So $c_{A}(x)$ has distinct roots in a algebraic closure of \mathbb{Q}.
Recall that \mathbb{C} is algebraically closed, and $\overline{\mathbb{Q}} \subset \mathbb{C}$ is an algebraic closure of \mathbb{Q}. We conclude that $c_{A}(x)$ has distinct roots in \mathbb{C}, so A can be diagonalized over \mathbb{C}.
3. Factor $x^{4}+1 \in F[x]$ and find the splitting field over F if the ground field F is:

$$
(a) \mathbb{Q}, \quad(b) \mathbb{F}_{2}, \quad(c) \mathbb{R}
$$

Solution: We note that $x^{4}+1=\Phi_{4}(x)$ and we know that $\Phi_{n}(x)$ is irreducible in $\mathbb{Q}[x]$ for any n. The roots of $x^{4}+1$ are the primitive $8^{\text {th }}$ roots of unity. One such root is

$$
\zeta_{8}=e^{2 \pi i / 8}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i
$$

We see that the splitting field of this polynomial is $\mathbb{Q}\left(\zeta_{8}\right)$.
Over \mathbb{F}_{2} we see that

$$
x^{4}+1=\left(x^{2}\right)^{2}+1^{2}=\left(x^{2}+1\right)^{2}=\left((x+1)^{2}\right)^{2}=(x+1)^{4} .
$$

The splitting field over \mathbb{F}_{2} of this polynomial is \mathbb{F}_{2}.
We see that the splitting field of $x^{4}+1$ over \mathbb{R} includes ζ_{8}, which means it also includes $\zeta_{8}^{2}=i$. So this splitting field includes $\mathbb{R}(i)=\mathbb{C}$. Since \mathbb{C} is algebraically closed, it contains all of the roots of $x^{4}+1$. So \mathbb{C} is the splitting field of $x^{4}+1$ over \mathbb{R}.
Since \mathbb{C} is a quadratic extension of a field of characteristic 0 , it is a Galois extension. The nontrivial Galois element given by complex conjugation. The roots of $m_{\zeta_{8}, \mathbb{R}}(x)$ are the distinct Galois conjugates of ζ_{8}. Therefore,

$$
m_{\zeta_{8}, \mathbb{R}}(x)=\left(x-\zeta_{8}\right)\left(x-\overline{\zeta_{8}}\right)=x-\left(\zeta_{8}+\overline{\zeta_{8}}\right) x+\zeta_{8} \overline{\zeta_{8}} .
$$

It is helpful to note that $\overline{\zeta_{8}}=\zeta_{8}^{7}$, and using the expression for ζ_{8} given above, we see that

$$
m_{\zeta_{8}, \mathbb{R}}(x)=x^{2}-\sqrt{2} x+1
$$

The remaining two roots of $x^{4}+1$ are $-\zeta_{8}$ and $-\overline{\zeta_{8}}$. So,

$$
m_{\zeta_{8}^{3}, \mathbb{R}}(x)=\left(x+\zeta_{8}\right)\left(x+\overline{\zeta_{8}}\right)=x^{2}+\sqrt{2} x+1 .
$$

So

$$
x^{4}+1=\left(x^{2}-\sqrt{2} x+1\right)\left(x^{2}+\sqrt{2} x+1\right) .
$$

4. Let p be prime and $\mathbb{F}_{p} \subset \mathbb{F}_{p^{n}}$ be a degree $n>1$ extension of finite fields. Consider the Frobenius automorphism $\Phi: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ sending α to α^{p}. Show that Φ is \mathbb{F}_{p}-linear, that its minimal polynomial $m_{\Phi}(x)$ has degree n, and then compute the minimal polynomial. Solution: We first note that for any $\alpha, \beta \in \mathbb{F}_{p}$, we have

$$
\Phi(a+b)=(a+b)^{p}=a^{p}+b^{p} .
$$

This statement holds in any ring of characteristic p, the proof uses the Binomial Theorem:

$$
(a+b)^{p}=\sum_{k=0}^{p}\binom{p}{k} a^{k} b^{p-k}=a^{p}+b^{p}+\sum_{k=1}^{p-1}\binom{p}{k} a^{k} b^{p-k} .
$$

We now need only note that for each $k \in\{1, \ldots, p-1\}$, we have $\binom{p}{k}=\frac{p!}{k!(p-k)!}$ is divisible by p because the numerator is, but the denominator is the product of two terms, neither of which is divisible by p.

We now note that $\mathbb{F}_{p^{n}}$ is a vector space over \mathbb{F}_{p} with the scalar multiplication given by the standard multiplication in $\mathbb{F}_{p^{n}}$. For any $c \in \mathbb{F}_{p}$ and $\alpha \in \mathbb{F}_{p^{n}}$ we have

$$
\Phi(c \cdot \alpha)=c^{p} \cdot \alpha^{p}=c \cdot \Phi(\alpha),
$$

since $c^{p}=c$. Therefore, Φ is \mathbb{F}_{p}-linear.
Suppose that

$$
m_{\Phi}(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0} \in \mathbb{F}_{p}[x] .
$$

Then

$$
\Phi^{m}+a_{m-1} \Phi^{m-1}+\cdots+a_{1} \Phi+a_{0} I=0
$$

as a linear transformation from $\mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$. That is,

$$
\alpha^{p^{m}}+a_{m-1} \alpha^{p^{m-1}}+\cdots+a_{1} \alpha^{p}+a_{0}=0
$$

for all $\alpha \in \mathbb{F}_{p^{n}}$. This is not possible if $m<n$, because then we would have a nonzero polynomial

$$
x^{p^{m}}+a_{m-1} x^{p^{m-1}}+\cdots+a_{1} x^{p}+a_{0}
$$

of degree p^{m} with at least p^{n} roots in $\mathbb{F}_{p^{n}}$.
Therefore, we see that the degree of $m_{\Phi}(x)$ is at least n. We see that it is exactly n by noting that

$$
\alpha^{p^{n}}-\alpha=0
$$

for all $\alpha \in \mathbb{F}_{p^{n}}$, so $\Phi^{n}-I=0$ as a linear transformation on $\mathbb{F}_{p^{n}}$. This implies $m_{\Phi}(x)=x^{n}-1$.
5. Let n be a positive integer. Prove that the $n^{\text {th }}$ cyclotomic polynomial $\Phi_{n}(x)$ has integer coefficients.
Solution: The $n^{\text {th }}$ cyclotomic polynomial $\Phi_{n}(x)$ is the monic polynomial whose roots are the primitive $n^{\text {th }}$ roots of unity. We prove this statement by induction on n. For $n=1$ we note that $\Phi_{1}(x)=x-1 \in \mathbb{Z}[x]$.
We recall that $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)$. We see that this is true by comparing the roots on both sides of the equation and noting that every $n^{\text {th }}$ root of unity is a primitive $d^{\text {th }}$ root of unity for some $d \mid n$ (d is the order of this root in the group of $n^{\text {th }}$ roots of unity).
We assume that the statement is true for all $m<n$. We see that

$$
x^{n}-1=\Phi_{n}(x) \cdot \prod_{\substack{d \mid n \\ d \neq n}} \Phi_{d}(x)
$$

Let $g(x)=\prod_{\substack{d \mid n \\ d \neq n}} \Phi_{d}(x)$.

By induction, $g(x) \in \mathbb{Z}[x]$. Therefore, we see that $g(x)$ divides $x^{n}-1$ in $\mathbb{Q}(\zeta)[x]$. By uniqueness of the remainder when applying the division algorithm in field extensions, since $x^{n}-1, g(x) \in \mathbb{Q}[x]$, we see that $g(x) \mid x^{n}-1$ in $\mathbb{Q}[x]$. This proves that $\Phi_{n}(x) \in \mathbb{Q}[x]$.
We note that $x^{n}-1, \Phi_{n}(x)$, and $g(x)$ are all monic polynomials. By Gauss' lemma, we conclude that in fact, $\Phi_{n}(x) \in \mathbb{Z}[x]$ (since the other two polynomials are).
6. Let p be an odd prime. How many subfields of $\mathbb{F}_{p^{12}}$ are there?

Solution: For each p and each $n, \mathbb{F}_{p^{n}}$ is a Galois extension of \mathbb{F}_{p} with $\operatorname{Gal}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right) \cong \mathbb{Z} / n \mathbb{Z}$. Every subfield of $\mathbb{F}_{p^{n}}$ contains its prime subfield \mathbb{F}_{p}. By the Galois correspondence there is a bijection between subfields E of $\mathbb{F}_{p^{n}}$ containing \mathbb{F}_{p} and subgroups of $\operatorname{Gal}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right)$. Subgroups of $\mathbb{Z} / n \mathbb{Z}$ are in bijection with divisors d of n. So, the number of subfields of $\mathbb{F}_{p^{n}}$ is the number of divisors of n. The divisors of 12 are $\{1,2,3,4,6,12\}$, so there are 6 subfields of $\mathbb{F}_{p^{12}}$.
7. Does there exist a field F and an extension K / F with $[K: F]=2$ that is not a Galois extension? Either give an example and explain why it has this property, or prove that no example exists.
Solution: We proved that a degree 2 extension of a field F of characteristic not equal to 2 is Galois because it is a splitting over F of a separable polynomial over F. So, we want to find a quadratic polynomial over a field of characteristic 2 that is not separable.
Consider $F=\mathbb{F}_{2}(u)$ and $f(x)=x^{2}-u \in F[x]$. This polynomial is irreducible in $F[x]$ since it is Eisenstein at u (really, Eisenstein's criterion shows that it is irreducible in $\mathbb{F}_{2}[u][x]$ and then Gauss' lemma shows that it is irreducible in $F[x]$). This polynomial is not separable since $f^{\prime}(x)=2 x=0$. Therefore, the field we get by adjoining a root of this polynomial to $F, F\left(u^{1 / 2}\right)=\mathbb{F}_{2}\left(u^{1 / 2}\right)$ is not separable over F, so it is not a Galois extension of F.
8. Let $K=\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$ and $F=\mathbb{Q}(\sqrt{-3})$. Is K / F a Galois extension? Justify your answer.

Solution: This is a Galois extension. First we note that $\zeta_{3}=\frac{-1+\sqrt{-3}}{2}$, so $K=\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{2}\right)$. We see that K is a splitting field of $x^{3}-2$ over \mathbb{Q} by noting that it contains all of the roots of $x^{3}-2$, and that $\mathbb{Q}(\sqrt[3]{2})$ does not.
We now need only note that if K / F is a Galois extension, then for any subfield E of K containing $F, K / E$ is a Galois extension.
9. Let K be a field and H be a subgroup of $\operatorname{Aut}(K)$.

Recall that K^{H} denotes the subfield of K consisting of elements fixed by every $\sigma \in H$. Is it true that $H \subseteq \operatorname{Aut}\left(K / K^{H}\right)$?
Either prove this statement or give a counterexample.
Solution: Let $\sigma \in H$. It is clear that σ is an automorphism of K so we need only show that σ fixes every element of K^{H}. If $\alpha \in K^{H}$, then α is fixed by every element of H, so in particular, $\sigma(\alpha)=\alpha$.

