
Math 206C: Algebra
Midterm 2: Solutions
Friday, May 21, 2021.

Problems

1. Prove that the polynomial f(x) = 1 + x
1 + x2

2 + · · ·+ xn

n! ∈ Q[x] has no multiple roots in C.

Solution: A polynomial f(x) has α as a multiple root if and only if α is a root of both f(x)
and its derivative f ′(x). We have

f ′(x) = 1 +
x

1
+
x2

2!
+ · · ·+ xn−1

(n− 1)!
.

We see that if α is a root of both f(x) and f ′(x) then

f(α)− f ′(α) =
αn

n!
= 0,

which implies α = 0. But clearly, f(α) = 1 6= 0. Therefore, f(x) does not have any multiple
roots in C.

2. Suppose that V is a finite dimensional vector space and T : V → V is a linear transformation
that has characteristic polynomial which is irreducible over Q.
Show that the matrix of T (in any basis of V ) can be diagonalized over the field C.

Solution: We recall that if A is a matrix with entries in a field F that contains all of the
eigenvalues of A, then A can be diagonalized over F if all of the eigenalues of A are distinct.

Let A be the matrix of T with respect to some basis B of V . The characteristic polynomial
of T is the characteristic polynomial of A, cA(x). This is an irreducible polynomial in Q[x].

If F is a perfect field, every irreducible polynomial in F [x] is separable over F . Every field of
characteristic 0 is perfect. So cA(x) has distinct roots in a algebraic closure of Q.

Recall that C is algebraically closed, and Q ⊂ C is an algebraic closure of Q. We conclude
that cA(x) has distinct roots in C, so A can be diagonalized over C.

3. Factor x4 + 1 ∈ F [x] and find the splitting field over F if the ground field F is:

(a) Q, (b) F2, (c) R.

Solution: We note that x4 + 1 = Φ4(x) and we know that Φn(x) is irreducible in Q[x] for
any n. The roots of x4 + 1 are the primitive 8th roots of unity. One such root is

ζ8 = e2πi/8 =

√
2

2
+

√
2

2
i.
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We see that the splitting field of this polynomial is Q(ζ8).

Over F2 we see that

x4 + 1 =
(
x2
)2

+ 12 = (x2 + 1)2 =
(
(x+ 1)2

)2
= (x+ 1)4.

The splitting field over F2 of this polynomial is F2.

We see that the splitting field of x4 +1 over R includes ζ8, which means it also includes ζ2
8 = i.

So this splitting field includes R(i) = C. Since C is algebraically closed, it contains all of the
roots of x4 + 1. So C is the splitting field of x4 + 1 over R.

Since C is a quadratic extension of a field of characteristic 0, it is a Galois extension. The
nontrivial Galois element given by complex conjugation. The roots of mζ8,R(x) are the distinct
Galois conjugates of ζ8. Therefore,

mζ8,R(x) = (x− ζ8)(x− ζ8) = x− (ζ8 + ζ8)x+ ζ8ζ8.

It is helpful to note that ζ8 = ζ7
8 , and using the expression for ζ8 given above, we see that

mζ8,R(x) = x2 −
√

2x+ 1.

The remaining two roots of x4 + 1 are −ζ8 and −ζ8. So,

mζ38 ,R
(x) = (x+ ζ8)(x+ ζ8) = x2 +

√
2x+ 1.

So
x4 + 1 = (x2 −

√
2x+ 1)(x2 +

√
2x+ 1).

4. Let p be prime and Fp ⊂ Fpn be a degree n > 1 extension of finite fields. Consider the
Frobenius automorphism Φ: Fpn → Fpn sending α to αp. Show that Φ is Fp-linear, that
its minimal polynomial mΦ(x) has degree n, and then compute the minimal polynomial.
Solution: We first note that for any α, β ∈ Fp, we have

Φ(a+ b) = (a+ b)p = ap + bp.

This statement holds in any ring of characteristic p, the proof uses the Binomial Theorem:

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k = ap + bp +

p−1∑
k=1

(
p

k

)
akbp−k.

We now need only note that for each k ∈ {1, . . . , p − 1}, we have
(
p
k

)
= p!

k!(p−k)! is divisible
by p because the numerator is, but the denominator is the product of two terms, neither of
which is divisible by p.
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We now note that Fpn is a vector space over Fp with the scalar multiplication given by the
standard multiplication in Fpn . For any c ∈ Fp and α ∈ Fpn we have

Φ(c · α) = cp · αp = c · Φ(α),

since cp = c. Therefore, Φ is Fp-linear.

Suppose that
mΦ(x) = xm + am−1x

m−1 + · · ·+ a1x+ a0 ∈ Fp[x].

Then
Φm + am−1Φm−1 + · · ·+ a1Φ + a0I = 0

as a linear transformation from Fpn → Fpn . That is,

αp
m

+ am−1α
pm−1

+ · · ·+ a1α
p + a0 = 0

for all α ∈ Fpn . This is not possible if m < n, because then we would have a nonzero
polynomial

xp
m

+ am−1x
pm−1

+ · · ·+ a1x
p + a0

of degree pm with at least pn roots in Fpn .

Therefore, we see that the degree of mΦ(x) is at least n. We see that it is exactly n by noting
that

αp
n − α = 0

for all α ∈ Fpn , so Φn−I = 0 as a linear transformation on Fpn . This implies mΦ(x) = xn−1.

5. Let n be a positive integer. Prove that the nth cyclotomic polynomial Φn(x) has integer
coefficients.
Solution: The nth cyclotomic polynomial Φn(x) is the monic polynomial whose roots are
the primitive nth roots of unity. We prove this statement by induction on n. For n = 1 we
note that Φ1(x) = x− 1 ∈ Z[x].

We recall that xn − 1 =
∏
d|n Φd(x). We see that this is true by comparing the roots on both

sides of the equation and noting that every nth root of unity is a primitive dth root of unity
for some d | n (d is the order of this root in the group of nth roots of unity).

We assume that the statement is true for all m < n. We see that

xn − 1 = Φn(x) ·
∏
d|n
d6=n

Φd(x).

Let g(x) =
∏

d|n
d6=n

Φd(x).
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By induction, g(x) ∈ Z[x]. Therefore, we see that g(x) divides xn − 1 in Q(ζ)[x]. By
uniqueness of the remainder when applying the division algorithm in field extensions, since
xn − 1, g(x) ∈ Q[x], we see that g(x) | xn − 1 in Q[x]. This proves that Φn(x) ∈ Q[x].

We note that xn − 1,Φn(x), and g(x) are all monic polynomials. By Gauss’ lemma, we
conclude that in fact, Φn(x) ∈ Z[x] (since the other two polynomials are).

6. Let p be an odd prime. How many subfields of Fp12 are there?
Solution: For each p and each n, Fpn is a Galois extension of Fp with Gal(Fpn/Fp) ∼= Z/nZ.
Every subfield of Fpn contains its prime subfield Fp. By the Galois correspondence there is a
bijection between subfields E of Fpn containing Fp and subgroups of Gal(Fpn/Fp). Subgroups
of Z/nZ are in bijection with divisors d of n. So, the number of subfields of Fpn is the number
of divisors of n. The divisors of 12 are {1, 2, 3, 4, 6, 12}, so there are 6 subfields of Fp12 .

7. Does there exist a field F and an extension K/F with [K : F ] = 2 that is not a Galois
extension? Either give an example and explain why it has this property, or prove that no
example exists.
Solution: We proved that a degree 2 extension of a field F of characteristic not equal to 2
is Galois because it is a splitting over F of a separable polynomial over F . So, we want to
find a quadratic polynomial over a field of characteristic 2 that is not separable.

Consider F = F2(u) and f(x) = x2 − u ∈ F [x]. This polynomial is irreducible in F [x] since
it is Eisenstein at u (really, Eisenstein’s criterion shows that it is irreducible in F2[u][x] and
then Gauss’ lemma shows that it is irreducible in F [x]). This polynomial is not separable
since f ′(x) = 2x = 0. Therefore, the field we get by adjoining a root of this polynomial to
F, F (u1/2) = F2(u1/2) is not separable over F , so it is not a Galois extension of F .

8. Let K = Q(
√
−3, 3
√

2) and F = Q(
√
−3). Is K/F a Galois extension? Justify your answer.

Solution: This is a Galois extension. First we note that ζ3 = −1+
√
−3

2 , so K = Q(ζ3,
3
√

2).
We see that K is a splitting field of x3 − 2 over Q by noting that it contains all of the roots
of x3 − 2, and that Q( 3

√
2) does not.

We now need only note that if K/F is a Galois extension, then for any subfield E of K
containing F, K/E is a Galois extension.

9. Let K be a field and H be a subgroup of Aut(K).
Recall that KH denotes the subfield of K consisting of elements fixed by every σ ∈ H.
Is it true that H ⊆ Aut(K/KH)?
Either prove this statement or give a counterexample.
Solution: Let σ ∈ H. It is clear that σ is an automorphism of K so we need only show
that σ fixes every element of KH . If α ∈ KH , then α is fixed by every element of H, so in
particular, σ(α) = α.
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