Math 206C: Algebra
Midterm 2: Solutions
Friday, May 21, 2021.

Problems

1. Prove that the polynomial f(z) =1+ { + % +--- 4 %7: € Q[z] has no multiple roots in C.

Solution: A polynomial f(z) has « as a multiple root if and only if « is a root of both f(x)
and its derivative f’(z). We have
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We see that if « is a root of both f(z) and f’(x) then

which implies & = 0. But clearly, f(a) =1 # 0. Therefore, f(z) does not have any multiple
roots in C.

2. Suppose that V' is a finite dimensional vector space and T: V' — V is a linear transformation
that has characteristic polynomial which is irreducible over Q.
Show that the matrix of 7' (in any basis of V') can be diagonalized over the field C.

Solution: We recall that if A is a matrix with entries in a field I’ that contains all of the
eigenvalues of A, then A can be diagonalized over F' if all of the eigenalues of A are distinct.

Let A be the matrix of T with respect to some basis B of V. The characteristic polynomial
of T is the characteristic polynomial of A, c4(z). This is an irreducible polynomial in Q[z].

If F is a perfect field, every irreducible polynomial in F'[x] is separable over F. Every field of
characteristic 0 is perfect. So c4(x) has distinct roots in a algebraic closure of Q.

Recall that C is algebraically closed, and Q C C is an algebraic closure of Q. We conclude
that c4(x) has distinct roots in C, so A can be diagonalized over C.
3. Factor 2* + 1 € F[z] and find the splitting field over F if the ground field F is:
(@) Q, (b)) F2, (o R

Solution: We note that 2% + 1 = ®4(x) and we know that ®,(z) is irreducible in Q[z] for
any n. The roots of z* 4 1 are the primitive 8" roots of unity. One such root is
V2 V2,

Cg = 627Ti/8 - 7 + 71.



We see that the splitting field of this polynomial is Q((g).

Over Fy we see that
2t 1= (332)2 +12=(22+1)?%= ((x + 1)2)2 = (z+ 1L

The splitting field over Fy of this polynomial is Fs.

We see that the splitting field of % + 1 over R includes (s, which means it also includes (2 = i.
So this splitting field includes R(i) = C. Since C is algebraically closed, it contains all of the
roots of z* + 1. So C is the splitting field of 2* + 1 over R.

Since C is a quadratic extension of a field of characteristic 0, it is a Galois extension. The
nontrivial Galois element given by complex conjugation. The roots of m¢, r() are the distinct
Galois conjugates of (g. Therefore,

mer(2) = (2 — ()(x — Cg) = = — (G + (s)a + CsCs-
It is helpful to note that (g = Cg , and using the expression for (g given above, we see that
mesr() = 2% — V22 + 1.
The remaining two roots of 24 4+ 1 are —(g and —(g. So,
mes r(®) = (2 + () (z + (5) = 2 + V2w + 1.

So
e 1= (22 = V2 +1)(2® + V2 +1).

. Let p be prime and F, C Fp» be a degree n > 1 extension of finite fields. Consider the
Frobenius automorphism ®: F,» — F,» sending o to o”. Show that ® is Fp-linear, that
its minimal polynomial mg(x) has degree n, and then compute the minimal polynomial.
Solution: We first note that for any «, 8 € F),, we have

®(a+b) = (a+b)P =a” +b°.

This statement holds in any ring of characteristic p, the proof uses the Binomial Theorem:

P p—1
CERLEDY (i) a"PF =aP P+ (Z) akpPF,
k=1

k=0

We now need only note that for each k € {1,...,p — 1}, we have (}) = ﬁik)! is divisible

by p because the numerator is, but the denominator is the product of two terms, neither of
which is divisible by p.



We now note that = is a vector space over I, with the scalar multiplication given by the
standard multiplication in [F,». For any ¢ € IF, and o € F» we have

Plc-a)=c-af =c-P(a),

since ¢? = c. Therefore, ® is F)-linear.

Suppose that
me(z) = 2™ 4 apm_12™ 4 -+ a1z 4+ ap € Fpx].

Then
D" 4 4y 1P 4+ a1 D agl =0

as a linear transformation from Fy» — F,». That is,

m—1

o+ a1+t ara? +ag =0
for all o € Fyn. This is not possible if m < n, because then we would have a nonzero
polynomial

m—1

a?" + amo12?” 4+ a1z +ag
of degree p" with at least p" roots in [Fjn.

Therefore, we see that the degree of mg(x) is at least n. We see that it is exactly n by noting
that
o —a=0

for all & € Fpn, so " —I = 0 as a linear transformation on Fy». This implies mg¢(z) = 2" — 1.

. Let n be a positive integer. Prove that the n'® cyclotomic polynomial ®,(x) has integer
coeflicients.

Solution: The n'* cyclotomic polynomial ®,(x) is the monic polynomial whose roots are
the primitive n*® roots of unity. We prove this statement by induction on n. For n = 1 we
note that ®1(x) =z — 1 € Z[z].

We recall that 2" — 1 =[], Pa(z). We see that this is true by comparing the roots on both

sides of the equation and noting that every n'® root of unity is a primitive d** root of unity
for some d | n (d is the order of this root in the group of n' roots of unity).

We assume that the statement is true for all m < n. We see that
2" —1=®p(z) - [ Pal2).

dln
d#n

Let g(&) = [T apn @al).
d#n



By induction, g(x) € Z[zx]. Therefore, we see that g(z) divides 2" — 1 in Q(¢)[z]. By
uniqueness of the remainder when applying the division algorithm in field extensions, since
z" — 1, g(x) € Q[x], we see that g(x) | 2™ — 1 in Q[z]. This proves that ®,(z) € Q[z].

We note that 2™ — 1, ®,(x), and g(x) are all monic polynomials. By Gauss’ lemma, we
conclude that in fact, ®,(x) € Z[z] (since the other two polynomials are).

. Let p be an odd prime. How many subfields of Fj:2 are there?

Solution: For each p and each n, Fyn is a Galois extension of I, with Gal(F,» /IF,) = Z/nZ.
Every subfield of F,,» contains its prime subfield F,,. By the Galois correspondence there is a
bijection between subfields E of Fp» containing F,, and subgroups of Gal(F,» /[F,). Subgroups
of Z/nZ are in bijection with divisors d of n. So, the number of subfields of F,» is the number
of divisors of n. The divisors of 12 are {1,2,3,4,6,12}, so there are 6 subfields of F 2.

. Does there exist a field F' and an extension K/F with [K: F] = 2 that is not a Galois
extension? FEither give an example and explain why it has this property, or prove that no
example exists.

Solution: We proved that a degree 2 extension of a field F' of characteristic not equal to 2
is Galois because it is a splitting over F' of a separable polynomial over F'. So, we want to
find a quadratic polynomial over a field of characteristic 2 that is not separable.

Consider F = Fo(u) and f(z) = 22 — u € F[z]. This polynomial is irreducible in F[z] since
it is Eisenstein at u (really, Eisenstein’s criterion shows that it is irreducible in Fa|u|[z] and
then Gauss’ lemma shows that it is irreducible in F[z]). This polynomial is not separable
since f’(x) = 2z = 0. Therefore, the field we get by adjoining a root of this polynomial to
F, F(u!/?) = Fy(u'/?) is not separable over F, so it is not a Galois extension of F.

. Let K = Q(v/=3,/2) and F = Q(v/=3). Is K/F a Galois extension? Justify your answer.
Solution: This is a Galois extension. First we note that (3 = _1%‘/?3, so K = Q((3, v2).

We see that K is a splitting field of 23 — 2 over Q by noting that it contains all of the roots
of 3 — 2, and that Q(+/2) does not.

We now need only note that if K/F is a Galois extension, then for any subfield E of K
containing F, K/FE is a Galois extension.

. Let K be a field and H be a subgroup of Aut(K).

Recall that K denotes the subfield of K consisting of elements fixed by every o € H.

Is it true that H C Aut(K/K*H)?

Either prove this statement or give a counterexample.

Solution: Let 0 € H. It is clear that ¢ is an automorphism of K so we need only show
that o fixes every element of KH. If « € K, then « is fixed by every element of H, so in
particular, o(a) = a.



