Math 230A: Algebra
 Final Exam: Solutions

Thursday, December 8, 2022.

Problems

1. Is the following statement True or False? Explain how you know that your answer is correct.

Every element of the symmetric group S_{6} has order at most 6 .
Solution: Let $\sigma \in S_{n}$ be a permutation. The order of σ is the least common multiple of the lengths of the cycles when you write σ as a product of disjoint cycles. Here are the possibilities for the cycle structure of a permutation $\sigma \in S_{6}$:

$$
(6),(5,1),(4,2),(4,1,1),(3,3),(3,2,1),(3,1,1,1),(2,2,2),(2,2,1,1),(1,1,1,1,1,1) .
$$

We see that in every case the least common multiple is at most 6 . So this is true.
2. Is the following statement True or False? Explain how you know that your answer is correct. For each $n \geq 3$, the automorphism group of the symmetric group S_{n} contains a subgroup isomorphic to S_{n}.
Solution: This is true. We first recall that the subgroup of inner automorphisms of a group G, those automorphisms that come from $x \rightarrow g x g^{-1}$ where $g \in G$ is fixed, is isomorphic to $G / Z(G)$. Since $Z\left(S_{n}\right)$ is trivial for $n \geq 3$, we see that the subgroup of $\operatorname{Aut}\left(S_{n}\right)$ consisting of inner automorphisms is isomorphic to S_{n}.
3. Is the following statement True or False? Explain how you know that your answer is correct.

Any subfield of \mathbb{R} must contain \mathbb{Q}.
Solution: This is true. A subfield F of \mathbb{R} must contain the multiplicative identity 1 of \mathbb{R}. (If $x \in F$ is nonzero, $y=1$ is the unique element of \mathbb{R} such that $x \cdot y=x$, so if F has any multiplicative identity, it must be 1.)

Since F is a subgroup of \mathbb{R}, it contains \mathbb{Z}. Let $n \in \mathbb{Z}$. Since $n \in F$ we must have $1 / n \in F$. Since F is closed under addition, we have $\frac{m}{n} \in F$ for any $m \in \mathbb{Z}$. Therefore, F contains \mathbb{Q}.
4. Consider the subset R of $M_{2}(\mathbb{R})$ consisting of matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

(a) Prove that R is a subring of $M_{2}(\mathbb{R})$.
(For this problem we are using the definition of a subring from Dummit and Foote where a subring does not necessarily have to contain the multiplicative identity of $M_{2}(\mathbb{R})$. But, note that in this case R does contain I_{2}, so don't worry about it.)
Solution: We need only show that this set is a subgroup under addition and that it is closed under multiplication. Note that

$$
\left(\begin{array}{cc}
a & b \\
b & a
\end{array}\right)+(-1) \cdot\left(\begin{array}{cc}
c & d \\
d & c
\end{array}\right)=\left(\begin{array}{cc}
a-c & b-d \\
b-d & a-c
\end{array}\right) \in R
$$

By the subgroup criterion, R is a subgroup.
We now check that

$$
\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \cdot\left(\begin{array}{ll}
c & d \\
d & c
\end{array}\right)=\left(\begin{array}{ll}
a c+b d & a d+b c \\
b c+a d & b d+a c
\end{array}\right) \in R
$$

So R is a subring.
(b) Prove that R is a commutative ring with 1 , but is not an integral domain.

Solution: If we take the computation we just did and exchange a and c, and exchange b and d, then we see the product we computed is unchanged. That is, multiplication is commutative. Setting $a=1$ and $b=0$ we see that R contains a multiplicative identity, I_{2}. We see that R is not an integral domain because

$$
\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

(c) Recall that an element x is an idempotent if $x^{2}=x$. Find all idempotents in R.

Solution

$$
\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)=\left(\begin{array}{cc}
a^{2}+b^{2} & 2 a b \\
2 a b & a^{2}+b^{2}
\end{array}\right) .
$$

So we get an idempotent if and only if $a=a^{2}+b^{2}$ and $2 a b=b$. This second equation implies that $(2 a-1) b=0$.
Since \mathbb{R} is an integral domain, there are two cases. If $b=0$ then we need only have $a=a^{2}$, which holds if and only if $a \in\{0,1\}$. If $b \neq 0$, then $2 a=1$ and $a=\frac{1}{2}$. In this case we get an idempotent if and only if $\frac{1}{4}=b^{2}$, which happens if and only if $b \in\left\{ \pm \frac{1}{2}\right\}$.
(d) Define $\varphi: R \rightarrow \mathbb{R}$ by

$$
\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \rightarrow a-b
$$

Show that φ is a ring homomorphism.
(In this problem we use the Dummit and Foote definition of a ring homomorphism, so it
is not required that φ takes the identity to the identity. In this case, the homomorphism does take the identity to the identity, so you don't need to worry about this distinction.)
Solution: Let

$$
A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right), M=\left(\begin{array}{ll}
c & d \\
d & c
\end{array}\right) .
$$

We have

$$
\varphi(A+M)=(a+c)-(b+d)=(a-b)+(c-d)=\varphi(A)+\varphi(M) .
$$

By the computation above, we have

$$
\varphi(A \cdot M)=(a c+b d)-(a d+b c)=(a-b)(c-d)=\varphi(A) \cdot \varphi(M) .
$$

(e) Determine the kernel of φ as well as $R / \operatorname{ker}(\varphi)$.

Solution: $A \in \operatorname{ker}(\varphi)$ if and only if $b=a$, which means

$$
A=\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) .
$$

(f) Is $\operatorname{ker}(\varphi)$ a prime ideal? Is $\operatorname{ker}(\varphi)$ a maximal ideal? Explain how you know.

Solution: By choosing $b=0$ and $a \in \mathbb{R}$ is clear that this ring homomorphism is surjective. By the First Isomorphism Theorem for Rings, $R / \operatorname{ker}(\varphi) \cong \mathbb{R}$. Since \mathbb{R} is both an integral domain and a field, we see that $\operatorname{ker}(\varphi)$ is prime and maximal.
5. Let G be a group and M, N be normal subgroups of G.

Prove that $G /(M \cap N)$ is isomorphic to a subgroup of $(G / M) \times(G / N)$.
Solution: Consider the homomorphism $\varphi: G \rightarrow(G / M) \times(G / N)$ defined by

$$
\varphi(x)=(x M, x N) .
$$

(It is clear that this is a group homomorphism, but if you want to write the details, just note that by the definition of multiplication in a quotient group,

$$
(x M, x N) \cdot(y M, y N)=(x y M, x y N),
$$

so we have $\varphi(x y)=\varphi(x) \cdot \varphi(y)$.)
We see that $x \in \operatorname{ker}(\varphi)$ if and only if $x M=1 M$ and $x N=1 N$. The first condition is equivalent to $x \in M$ and the second is equivalent to $x \in N$. Taken together we conclude that $x \in \operatorname{ker}(\varphi)$ if and only if $x \in M \cap N$. By the First Isomorphism Theorem for Groups, $G / \operatorname{ker}(\varphi) \cong \varphi(G)$, which is a subgroup of $(G / M) \times(G / N)$, since the image of a group homomorphism is always a subgroup.
6. Assume that all rings in this question are commutative with a multiplicative identity $1 \neq 0$. For each of the following, either give an example (with an explanation) of such an ideal, or explain why such an example does not exist:
(a) A prime ideal P in a finite ring R that is not a maximal ideal.

Solution: In a commutative ring R with identity $1 \neq 0$, for any ideal I of R, we have I is prime if and only if R / I is an integral domain, and I is maximal if and only if R / I is a field. Therefore, we are looking for a finite ring R with an ideal I for which R / I is an integral domain, but not a field. But, since R is finite, R / I is finite. We proved that a finite integral domain is a field. Therefore, I is prime implies that I is maximal, so such an example does not exist.
(b) A prime ideal P in an integral domain R that is nonzero but not a maximal ideal.

Solution: Let $R=\mathbb{Z}[x]$. This is an integral domain since \mathbb{Z} is an integral domain. Let $P=(x)$. We have $\mathbb{Z}[x] /(x) \cong \mathbb{Z}$, which is an integral domain that is not a field. (We can see this quotient by noting that (x) is the kernel of the ring homomorphism where we send $p(x)$ to $p(0)$.)
7. Let G be a finite group and let p be a prime dividing $|G|$. Prove that there is a unique Sylow p-subgroup of G if and only if any Sylow p-subgroup of G is normal in G.
Solution: Suppose $P, Q \in \operatorname{Syl}_{p}(G)$. By Sylow II, P and Q are conjugate in G. That is, there exists $g \in G$ for which $g P g^{-1}=Q$. Therefore, if P is normal in G, then $Q=P$.
Now suppose there is a unique Sylow p-subgroup P in G. We know that G acts on the set its subgroups of given size by conjugation. Therefore, for any $g \in G$, we have $g P g^{-1}$ is a subgroup of G of order equal to $|P|$. Since P is the only subgroup of G of order equal to $|P|$, we must have $g P g^{-1}$ for all g, which means that P is normal in G.
8. Let G be a group of order 12. Prove that G is isomorphic to a semidirect product $H \rtimes_{\varphi} K$ where $H, K \leq G$ are proper non-trivial subgroups of G.

Solution: $12=2^{2} \cdot 3$. By Sylow III, $n_{3} \equiv 1(\bmod 3)$ and $n_{3} \mid 4$. Therefore, $n_{3} \in\{1,4\}$.
(a) Suppose that $n_{3}=1$. Let Q be the unique Sylow 3 -subgroup of G. Since it is unique, it must be normal in G. Let $P \in \operatorname{Syl}_{2}(G)$. We see that $P Q \leq G$ since $Q \unlhd G$. By Lagrange's theorem, $P \cap Q$ is trivial (its order must divide both 4 and 3). Therefore,

$$
|P Q|=\frac{|P| \cdot|Q|}{|P \cap Q|}=12
$$

which means that $P Q=G$. By the Recognition Theorem for Semidirect Products, $G \cong Q \rtimes_{\varphi} P$, where $\varphi: P \rightarrow \operatorname{Aut}(Q)$ is defined by conjugation.
(b) Suppose $n_{3}=4$. Since G contains 4 subgroups of order 3 , it contains 8 elements of order 3. There are only 4 elements of G that do not have order 3. A Sylow 2-subgroup of G has 4 elements, and does not have any elements of order 3, so it must consist of the 4 elements of G that do not have order 3. Since this is true of any Sylow 2-subgroup, there is a unique Sylow 2-subgroup P of G, so it is normal in G.
Using the same reasoning as above, $P Q \leq G,|P \cap Q|=1, P Q=G$, and by the Recognition Theorem for Semidirect Products, $G \cong P \rtimes_{\varphi} Q$, where $\varphi: Q \rightarrow \operatorname{Aut}(P)$ is defined by conjugation.
9. Does there exist a group G and a subgroup $H \leq G$ such that G is a simple group and H is not a simple group? Either give an example or prove that no such example exists.
Solution: There are lots of examples like this. For example, A_{9} is simple and A_{9} contains a 9 -cycle. This 9 -cycle generates a subgroup isomorphic to $\mathbb{Z} / 9 \mathbb{Z}$, which is not simple because it has a proper normal subgroup isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$.
10. (a) State Cauchy's Theorem.

Solution: Let G be a finite group of order n and let p be a prime dividing $|G|$. Then G contains an element of order p.
(b) State Cayley's Theorem.

Solution: Let G be a group (not necessarily finite). Then G is isomorphic to a subgroup of S_{G}, the set of permutations of the elements of G.
(c) State the Third Isomorphism Theorem for Groups.

Solution: Let G be a group and H and K be normal subgroups of G with $H \leq K$. Then $K / H \unlhd G / H$ and

$$
(G / H) /(K / H) \cong G / K .
$$

