Math 230A: Algebra
 Midterm 1

Wednesday, October 19, 2022.

- You have 90 minutes for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used.

Do not use a calculator.

- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.
(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	
$\mathbf{1}$ (4 Points)	
$\mathbf{2}$ (5 Points)	
$\mathbf{3}$ (10 Points)	
$\mathbf{4}$ (5 Points)	
$\mathbf{5}$ (8 Points)	
Total	

Problems	
$\mathbf{6}$ (10 Points)	
$\mathbf{7}$ (8 Points)	
8 (10 Points)	
$\mathbf{9}$ (8 Points)	
$\mathbf{1 0}$ (10 Points)	
Total	

Problems

1. State the Second Isomorphism Theorem.
2. Let G be a group and H, K be subgroups of G. Consider the set $H K=\{h k: h \in H, k \in K\}$. Does $H K$ always have to be a subgroup of G ?
Either prove that the answer is yes, or give an example to show that it does not always have to be a subgroup.
3. Let G be a group and A be a nonempty subset of G.
(a) Define the centralizer $C_{G}(A)$ of A in G.
(b) Define the normalizer $N_{G}(A)$ of A in G.
(c) Prove that $C_{G}(A)$ is a normal subgroup of $N_{G}(A)$.

Note: You may use the fact that $C_{G}(A)$ and $N_{G}(A)$ are subgroups of G without proving it.
4. Are $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$ isomorphic?

Either give an isomorphism between them or prove that no isomorphism exists.
5. Suppose G is a group acting on a set X. Prove that different orbits of this group action are disjoint and that these orbits partition the set X.
6. (a) Let G be a group and define the set of squares in G to be $S=\left\{g^{2}: g \in G\right\}$. Suppose $H \leq G$ is a subgroup of index 2. Prove that $S \subseteq H$.
(b) Define the set of cubes in G to be $C=\left\{g^{3}: g \in G\right\}$.

Suppose $K \leq G$ is a subgroup of index 3 . Do we have to have $C \subseteq K$?
Either prove this is always the case, or give an example to show that C is not always contained in K.
7. For each part of this problem, explain how you know your answer is correct.
(a) For which positive integers n does S_{n} contain a subgroup isomorphic to \mathbb{Z} / \mathbb{Z} ?
(b) For which positive integers n does S_{n} contain a subgroup isomorphic to $\mathbb{Z} / 10 \mathbb{Z}$?
8. Suppose G is a cyclic group. Prove that every subgroup H of G is cyclic.
9. (a) Suppose G is a group acting on a set X. (You may assume this is a left group action.) Define the stabilizer of x.
(b) Let G be a group and $H \leq G$. We know that G acts on the set of left cosets of H in G by left multiplication. What is the stabilizer of the element $a H \in G / H$? Explain your answer.
10. Let G be a finite simple group having a subgroup H of prime index p. Show that p is the largest prime divisor of $|G|$.

