Math 230A: Algebra
 Midterm 1 Solutions
 Wednesday, October 19, 2022.

Problems

1. State the Second Isomorphism Theorem.

Solution: Let G be a group and $A, B \leq G$ satisfying $A \leq N_{G}(B)$. Then, $A B \leq G, B \unlhd$ $A B, A \cap B \unlhd A$, and $A /(A \cap B) \cong A B / B$.
2. Let G be a group and H, K be subgroups of G.

Consider the set $H K=\{h k: h \in H, k \in K\}$. Does $H K$ always have to be a subgroup of G ?
Solution: $H K$ does not have to be a subgroup if H is not contained in the normalizer for K in G. So we should pick K not to be a normal subgroup of G. (In fact, we want both H and K not to be normal in G. Can you see why?) For example, we can take $K=\langle s r\rangle$ and $H=\langle s\rangle$ in $G=D_{6}$. In this case, we have $H K=\{1, s, s r, s r s\}=\left\{1, s, s r, r^{2}\right\}$, since $r s=s r^{2}$. We see that $H K$ is not a subgroup of G since it does not contain $s \cdot s r=r$.
3. Let G be a group and A be a nonempty subset of G.
(a) Define the centralizer $C_{G}(A)$ of A in G.
(b) Define the normalizer $N_{G}(A)$ of A in G.
(c) Prove that $C_{G}(A)$ is a normal subgroup of $N_{G}(A)$.

Note: You may use the fact that $C_{G}(A)$ and $N_{G}(A)$ are subgroups of G without proving it.
Solution: $C_{G}(A)=\{g \in G: g a=a g$ for all $a \in A\}$. $N_{G}(A)=\left\{g \in G: g A g^{-1}=A\right\}$.
We want to show that for all $g \in N_{G}(A)$ we have $g C_{G}(A) g^{-1}=C_{G}(A)$.
It is enough to show that for all $x \in C_{G}(A)$ we have $g x g^{-1} \in C_{G}(A)$. That is, we need to show that for $x \in C_{G}(A)$ and $g \in N_{G}(A)$, we have $g x g^{-1} a=a g x g^{-1}$ for all $a \in A$.
Multiply each side of the equation

$$
g x g^{-1} a=a g x g^{-1}
$$

by g^{-1} on the left and by g on the right to see that this is equivalent to

$$
x\left(g^{-1} a g\right)=\left(g^{-1} a g\right) x .
$$

Since $g \in N_{G}(A)$ and $N_{G}(A) \leq G$ we have $g^{-1} \in N_{G}(A)$. Therefore, $g^{-1} a g=a^{\prime}$ for some $a^{\prime} \in A$ by the definition of $N_{G}(A)$. Since $x \in C_{G}(A)$ we have $x a^{\prime}=a^{\prime} x$.
This completes the proof.
4. Are $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$ isomorphic?

Either give an isomorphism between them or prove that no isomorphism exists.

Solution: These groups are not isomorphic. The main idea is to show that no homomorphism from \mathbb{Z} to \mathbb{Q} can be surjective. We argue by contradiction.
Suppose $\varphi: \mathbb{Z} \rightarrow \mathbb{Q}$ is a homomorphism. Since $\mathbb{Z}=\langle 1\rangle$ we have $\varphi(n)=n \cdot \varphi(1)$ for any integer n. Let $\varphi(1)=a / b$. It is clear that multiplying a / b by n does not increase the denominator, so the image of this homomorphism does not contain rational numbers with arbitrarily large denominators. Therefore, φ cannot be surjective, so it cannot be an isomorphism.
(This proof is basically the same as showing that $(\mathbb{Q},+)$ is not cyclic.)
5. Suppose G is a group acting on a set X. Prove that different orbits of this group action are disjoint and that these orbits partition the set X.
Solution: (This is Theorem 3.16(a) in Conrad's 'Group Actions' notes.)
Suppose that $z \in \operatorname{Orb}_{x} \cap \operatorname{Orb}_{y}$. We want to show that $\operatorname{Orb}_{x}=\operatorname{Orb}_{y}$. Since $z \in \operatorname{Orb}_{x}$, there exists $g \in G$ such that $g \cdot x=z$. Since we have a group action

$$
g^{-1} \cdot z=g^{-1} \cdot(g \cdot x)=x
$$

Since $z \in \operatorname{Orb}_{y}$, there exists $g^{\prime} \in G$ such that $g^{\prime} \cdot y=z$. Therefore,

$$
g^{-1} g^{\prime} \cdot y=g^{-1} \cdot\left(g^{\prime} \cdot y\right)=g^{-1} \cdot z=x
$$

We see that $x \in \operatorname{Orb}_{y}$. Similarly, for any $u=g^{*} \cdot x$ we have $g^{*} g^{-1} g^{\prime} \cdot y=g^{*} \cdot x=u$, which means $u \in \operatorname{Orb}_{y}$. This shows that $\operatorname{Orb}_{x} \subseteq \operatorname{Orb}_{y}$. A totally parallel argument with x and y reversed shows that $\operatorname{Orb}_{y} \subseteq \operatorname{Orb}_{x}$.
We now need only note that the union of the different orbits includes all the elements of X. Every element $x \in X$ is in some orbit since clearly $x \in \operatorname{Orb}_{x}$.
6. (a) Let G be a group and define the set of squares in G to be $S=\left\{g^{2}: g \in G\right\}$.

Suppose $H \leq G$ is a subgroup of index 2 . Prove that $S \subseteq H$.
(b) Define the set of cubes in G to be $C=\left\{g^{3}: g \in G\right\}$. Suppose $K \leq G$ is a subgroup of index 3. Do we have to have $C \subseteq K$?
Explain how you know your answer is correct.
Solution: Since H has index 2 in G it is normal in G. Since G / H has order 2 every $x \in G / H$ satisfies $x^{2}=1 H$. Consider the natural projection homomorphism $\pi: G \rightarrow G / H$. We have $\pi\left(g^{2}\right)=\pi(g)^{2}=1 H$. Since $\pi\left(g^{2}\right)=g^{2} H=1 H$, we have $g^{2} \in H$.
For the second part, C does not have to be in every subgroup of index 3 .
For example, consider the subgroup $\langle s\rangle \subseteq D_{6}$. We have that $(s r)^{3}=s r \in C$, but $s r \notin\langle s\rangle$.
7. For each part of this problem, explain how you know your answer is correct.
(a) For which positive integers n does S_{n} contain a subgroup isomorphic to $\mathbb{Z} / 7 \mathbb{Z}$?
(b) For which positive integers n does S_{n} contain a subgroup isomorphic to $\mathbb{Z} / 10 \mathbb{Z}$?

Solution: Every $\sigma \in S_{n}$ has a decomposition into a product of disjoint cycles. The important thing to remember is that these disjoint cycles partition $\{1,2, \ldots, n\}$, and the order of σ is the least common multiple of the lengths of the cycles. So for the first part, we need a bunch of cycles whose lengths add up to n and have least common multiple equal to 7 . If the lcm of a set of numbers is 7 then at least one of these numbers must be equal to 7 . Therefore, we must have $n \geq 7$. We can think of the 7 -cycle $\sigma=(1234567)$ as being an element of S_{n} for any $n \geq 7$ by just saying that σ fixes $\{8,9, \ldots, n\}$.

For the second part, if the lcm of a bunch of numbers is 10 , then at least one of the numbers has to be divisible by 5 and at least one of the numbers must be divisible by 2 . The smallest n for which we can do this is $n=7$ where we can have the product of a 5 -cycle and a disjoint 2 -cycle, something like $\sigma=(12345)(67)$. As above, we can think of this as an element of S_{n} for any $n \geq 7$.
8. Suppose G is a cyclic group. Prove that every subgroup H of G is cyclic.

Solution: (This is Theorem 2.1 in Conrad's notes 'Subgroups of Cyclic Groups'.)
Suppose $G=\langle x\rangle$. If H is trivial, it is $\langle 1\rangle$. Suppose H is not trivial. There is a minimum positive integer d such that $x^{d} \in H$.

To see this, it is enough to note that H contains x^{m} for some positive integer m. We know that H contains some nonidentity element $y \in G$. Since $G=\langle x\rangle$, we have $y=x^{m}$ for some m. If m is negative, we know that H is a subgroup, which implies that $y^{-1}=x^{-m} \in H$. (You did not have to justify this part to get full credit on this problem.)
We claim that $H=\left\langle x^{d}\right\rangle$. Since $x^{d} \in H$, it is clear that $\left\langle x^{d}\right\rangle \subseteq H$. We show inclusion the other way. Suppose $y \in H$. Since $y \in G=\langle x\rangle$ we have $y=x^{m}$ for some m. We apply the division algorithm to write $m=q d+r$ for some $r \in\{0,1,2 \ldots, d-1\}$. Since $x^{d} \in H$ we see that $x^{-q d} \in H$, and $y \cdot x^{-q d}=x^{r} \in H$. Since d was chosen to be the minimum positive integer for which $x^{d} \in H$, we must have $r=0$. Therefore $y=x^{q d} \in\left\langle x^{d}\right\rangle$.
9. (a) Suppose G is a group acting on a set X. (You may assume this is a left group action.) Define the stabilizer of x.
Solution: $\operatorname{Stab}_{x}=\{g \in G: g \cdot x=x\}$.
(b) Let G be a group and $H \leq G$. We know that G acts on the set of left cosets of H in G by left multiplication. What is the stabilizer of the element $a H \in G / H$?

Solution:

$$
\operatorname{Stab}_{a H}=\{g \in G: g \cdot a H=a H\}=\{g \in G: g a H=a H\}
$$

We recall that $x H=y H$ if and only if $y^{-1} x \in H$. Therefore,

$$
\operatorname{Stab}_{a H}=\left\{g \in G: a^{-1} g a \in H\right\} .
$$

We see that $a^{-1} g a \in H$ if and only if $g \in a H a^{-1}$.
10. Let G be a finite simple group having a subgroup H of prime index p.

Show that p is the largest prime divisor of $|G|$.
Solution: G acts on the set of left cosets of H in G. We have $|G / H|=p$. This group action gives a homomorphism $\psi: G \rightarrow S_{G / H} \cong S_{p}$. We see that $\operatorname{ker}(\psi) \unlhd G$. Since G is simple $\operatorname{ker}(\psi)$ is either trivial or is all of G. We note that $g \in \operatorname{ker}(\psi)$ implies $g \cdot 1 H=g H=1 H$, so $g \in H$. Since $H \neq G$, we see that $\operatorname{ker}(\psi) \neq G$. Therefore, $\operatorname{ker}(\psi)$ is trivial. By the First Isomorphism Theorem, $G \cong \psi(G) \leq S_{G / H}$. By Lagrange's theorem, we must have $|G|$ divides $\left|S_{G / H}\right|=p$!. We conclude that G cannot have a prime factor larger than p. So p must be the largest prime dividing $|G|$.

