
Math 230A: Algebra
Midterm 1 Solutions

Wednesday, October 19, 2022.

Problems

1. State the Second Isomorphism Theorem.

Solution: Let G be a group and A,B ≤ G satisfying A ≤ NG(B). Then, AB ≤ G, B E
AB, A ∩B E A, and A/(A ∩B) ∼= AB/B.

2. Let G be a group and H,K be subgroups of G.
Consider the set HK = {hk : h ∈ H, k ∈ K}. Does HK always have to be a subgroup of G?

Solution: HK does not have to be a subgroup if H is not contained in the normalizer for
K in G. So we should pick K not to be a normal subgroup of G. (In fact, we want both H
and K not to be normal in G. Can you see why?) For example, we can take K = 〈sr〉 and
H = 〈s〉 in G = D6. In this case, we have HK = {1, s, sr, srs} = {1, s, sr, r2}, since rs = sr2.
We see that HK is not a subgroup of G since it does not contain s · sr = r.

3. Let G be a group and A be a nonempty subset of G.

(a) Define the centralizer CG(A) of A in G.

(b) Define the normalizer NG(A) of A in G.

(c) Prove that CG(A) is a normal subgroup of NG(A).

Note: You may use the fact that CG(A) and NG(A) are subgroups of G without proving it.

Solution: CG(A) = {g ∈ G : ga = ag for all a ∈ A}. NG(A) = {g ∈ G : gAg−1 = A}.
We want to show that for all g ∈ NG(A) we have gCG(A)g−1 = CG(A).

It is enough to show that for all x ∈ CG(A) we have gxg−1 ∈ CG(A). That is, we need to
show that for x ∈ CG(A) and g ∈ NG(A), we have gxg−1a = agxg−1 for all a ∈ A.

Multiply each side of the equation

gxg−1a = agxg−1

by g−1 on the left and by g on the right to see that this is equivalent to

x(g−1ag) = (g−1ag)x.

Since g ∈ NG(A) and NG(A) ≤ G we have g−1 ∈ NG(A). Therefore, g−1ag = a′ for some
a′ ∈ A by the definition of NG(A). Since x ∈ CG(A) we have xa′ = a′x.

This completes the proof.
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4. Are (Z,+) and (Q,+) isomorphic?
Either give an isomorphism between them or prove that no isomorphism exists.

Solution: These groups are not isomorphic. The main idea is to show that no homomorphism
from Z to Q can be surjective. We argue by contradiction.

Suppose ϕ : Z→ Q is a homomorphism. Since Z = 〈1〉 we have ϕ(n) = n ·ϕ(1) for any integer
n. Let ϕ(1) = a/b. It is clear that multiplying a/b by n does not increase the denominator,
so the image of this homomorphism does not contain rational numbers with arbitrarily large
denominators. Therefore, ϕ cannot be surjective, so it cannot be an isomorphism.
(This proof is basically the same as showing that (Q,+) is not cyclic.)

5. Suppose G is a group acting on a set X. Prove that different orbits of this group action are
disjoint and that these orbits partition the set X.

Solution: (This is Theorem 3.16(a) in Conrad’s ‘Group Actions’ notes.)

Suppose that z ∈ Orbx ∩Orby. We want to show that Orbx = Orby. Since z ∈ Orbx, there
exists g ∈ G such that g · x = z. Since we have a group action

g−1 · z = g−1 · (g · x) = x.

Since z ∈ Orby, there exists g′ ∈ G such that g′ · y = z. Therefore,

g−1g′ · y = g−1 · (g′ · y) = g−1 · z = x.

We see that x ∈ Orby. Similarly, for any u = g∗ · x we have g∗g−1g′ · y = g∗ · x = u, which
means u ∈ Orby. This shows that Orbx ⊆ Orby. A totally parallel argument with x and y
reversed shows that Orby ⊆ Orbx.

We now need only note that the union of the different orbits includes all the elements of X.
Every element x ∈ X is in some orbit since clearly x ∈ Orbx.

6. (a) Let G be a group and define the set of squares in G to be S = {g2 : g ∈ G}.
Suppose H ≤ G is a subgroup of index 2. Prove that S ⊆ H.

(b) Define the set of cubes in G to be C = {g3 : g ∈ G}. Suppose K ≤ G is a subgroup of
index 3. Do we have to have C ⊆ K?
Explain how you know your answer is correct.

Solution: Since H has index 2 in G it is normal in G. Since G/H has order 2 every x ∈ G/H
satisfies x2 = 1H. Consider the natural projection homomorphism π : G → G/H. We have
π(g2) = π(g)2 = 1H. Since π(g2) = g2H = 1H, we have g2 ∈ H.

For the second part, C does not have to be in every subgroup of index 3.
For example, consider the subgroup 〈s〉 ⊆ D6. We have that (sr)3 = sr ∈ C, but sr 6∈ 〈s〉.
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7. For each part of this problem, explain how you know your answer is correct.

(a) For which positive integers n does Sn contain a subgroup isomorphic to Z/7Z?

(b) For which positive integers n does Sn contain a subgroup isomorphic to Z/10Z?

Solution: Every σ ∈ Sn has a decomposition into a product of disjoint cycles. The important
thing to remember is that these disjoint cycles partition {1, 2, . . . , n}, and the order of σ is
the least common multiple of the lengths of the cycles. So for the first part, we need a bunch
of cycles whose lengths add up to n and have least common multiple equal to 7. If the lcm
of a set of numbers is 7 then at least one of these numbers must be equal to 7. Therefore, we
must have n ≥ 7. We can think of the 7-cycle σ = (1234567) as being an element of Sn for
any n ≥ 7 by just saying that σ fixes {8, 9, . . . , n}.
For the second part, if the lcm of a bunch of numbers is 10, then at least one of the numbers
has to be divisible by 5 and at least one of the numbers must be divisible by 2. The smallest
n for which we can do this is n = 7 where we can have the product of a 5-cycle and a disjoint
2-cycle, something like σ = (12345)(67). As above, we can think of this as an element of Sn
for any n ≥ 7.

8. Suppose G is a cyclic group. Prove that every subgroup H of G is cyclic.

Solution: (This is Theorem 2.1 in Conrad’s notes ‘Subgroups of Cyclic Groups’.)

Suppose G = 〈x〉. If H is trivial, it is 〈1〉. Suppose H is not trivial. There is a minimum
positive integer d such that xd ∈ H.

To see this, it is enough to note that H contains xm for some positive integer m. We know
that H contains some nonidentity element y ∈ G. Since G = 〈x〉, we have y = xm for some
m. If m is negative, we know that H is a subgroup, which implies that y−1 = x−m ∈ H.
(You did not have to justify this part to get full credit on this problem.)

We claim that H = 〈xd〉. Since xd ∈ H, it is clear that 〈xd〉 ⊆ H. We show inclusion the
other way. Suppose y ∈ H. Since y ∈ G = 〈x〉 we have y = xm for some m. We apply the
division algorithm to write m = qd + r for some r ∈ {0, 1, 2 . . . , d − 1}. Since xd ∈ H we
see that x−qd ∈ H, and y · x−qd = xr ∈ H. Since d was chosen to be the minimum positive
integer for which xd ∈ H, we must have r = 0. Therefore y = xqd ∈ 〈xd〉.

9. (a) Suppose G is a group acting on a set X. (You may assume this is a left group action.)
Define the stabilizer of x.

Solution: Stabx = {g ∈ G : g · x = x}.
(b) Let G be a group and H ≤ G. We know that G acts on the set of left cosets of H in G

by left multiplication. What is the stabilizer of the element aH ∈ G/H?
Solution:

StabaH = {g ∈ G : g · aH = aH} = {g ∈ G : gaH = aH}.
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We recall that xH = yH if and only if y−1x ∈ H. Therefore,

StabaH = {g ∈ G : a−1ga ∈ H}.

We see that a−1ga ∈ H if and only if g ∈ aHa−1.

10. Let G be a finite simple group having a subgroup H of prime index p.
Show that p is the largest prime divisor of |G|.
Solution: G acts on the set of left cosets of H in G. We have |G/H| = p. This group action
gives a homomorphism ψ : G → SG/H

∼= Sp. We see that ker(ψ) E G. Since G is simple
ker(ψ) is either trivial or is all of G. We note that g ∈ ker(ψ) implies g · 1H = gH = 1H,
so g ∈ H. Since H 6= G, we see that ker(ψ) 6= G. Therefore, ker(ψ) is trivial. By the First
Isomorphism Theorem, G ∼= ψ(G) ≤ SG/H . By Lagrange’s theorem, we must have |G| divides
|SG/H | = p!. We conclude that G cannot have a prime factor larger than p. So p must be the
largest prime dividing |G|.
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