Math 230b: Algebra
 Final Exam

Friday, March 182016.

NAME:

- You have two hours for this exam. Pace yourself, and do not spend too much time on any one problem.
- There are 10 total problems on the exam. You only need to do 8 of them. On the front page of your exam clearly indicate which two problems you do not want graded by crossing them out.
- Show your work and justify all of your answers. The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used. Do not use a calculator.
- If you need more room, use extra pages, and indicate clearly that you have done so.
- You may use results that we proved in lecture or on the homework without proving them here provided you clearly state the result your are using.

Problems	
1	
2	
3	
4	
5	
Total	

Problems	
6	
7	
8	
9	
10	
Total	

1. (a) Let R be a ring with a 1 and M any R-module. Show that $R \otimes_{R} M \cong M$.
(b) Prove that $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{C}$.
2. Each of the following examples gives a ring R and an ideal I of R. In each case state (and justify)

- whether or not I is a prime ideal, and
- whether or not I is a maximal ideal.
(a) $R=\mathbb{Z} \times \mathbb{Z}, I$ is the principal ideal generated by $(1,5)$.
(b) $R=\mathbb{Z} \times \mathbb{Z}, I=7 \mathbb{Z} \times 7 \mathbb{Z}$.
(c) $R=\mathbb{Z}[x], I$ is the principal ideal $\left(x^{2}-1\right)$.
(d) $R=\mathbb{Z}[x] /\left(x^{2}\right), I$ is the principal ideal (x).
(e) $R=\mathbb{Z}[i], I$ is the principal ideal (7).

3. (a) Recall that a commutative ring R with a 1 is Noetherian if it satisfies the ascending chain condition on ideals, or equivalently, if every ideal of R is finitely generated. Prove that if $R[x]$ is Noetherian, then R is Noetherian.
(b) Let R be an arbitrary ring. A free R-module of finite type is an R-module isomorphic to R^{n} for some integer $n \geq 0$.
Prove that an R-module M is finitely generated if and only if there exists a free R-module P of finite type and a surjective R-module homomorphism $\varphi: P \rightarrow M$.
4. Let R be a commutative ring with a 1 . Recall that an R-module M is Noetherian if it satisfies the ascending chain condition on submodules, or equivalently, every submodule of M is finitely generated.

Let M be a Noetherian R-module and $f: M \rightarrow M$ a surjective R-module homomorphism. Show that f is an isomorphism.
5. (a) Let F be a field and $R \subset F$ be a subring with the property that for every $x \in F$, either $x \in R$ or $x^{-1} \in R$ (or both). Prove that if I and J are two ideals of R, then either $I \subseteq J$ or $J \subseteq I$.
(b) Construct a proper subring $R \subsetneq \mathbb{Q}$ such that for every $x \in \mathbb{Q}$ either $x \in R$ or $x^{-1} \in R$ (or both).
6. Let $R \subset \mathbb{R}[x]$ be the subring of $\mathbb{R}[x]$ consisting of polynomials whose coefficient of x is 0 :

$$
R=\left\{f(x)=a_{0}+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n} \mid a_{i} \in \mathbb{R}, n \in \mathbb{Z}_{\geq 0}\right\}
$$

The ring R is an integral domain (you may use this without proof).
(a) Give an example of an ideal $I \subset R$ that is not principal. You must justify your answer by proving that I is not a principal ideal of R.
(b) Prove that R is not a UFD.
7. (a) Let F be a field and $n>0$. Prove that every ideal in $F[x] /\left(x^{n}\right)$ is principal.
(b) For $n>1$, prove that $F[x] /\left(x^{n}\right)$ has exactly one maximal ideal, but is not a field.
8. Let $R=\mathbb{Z}[\sqrt{-m}]$ where m is a squarefree odd integer with $m \geq 3$.
(a) Show that 1 and -1 are the only units of R.
(b) Show that 2 and $1+\sqrt{-m}$ are irreducible in R.
(c) Show that R is not a UFD.
9. Let R be a commutative ring with with a 1 and let J be the intersection of all maximal ideals of R. Then

$$
1+J=\{1+x \mid x \in J\}
$$

is a subgroup of the group of units of R.
10. Let R be a commutative ring with 1 and M a left R-module. The set of torsion elements of M is denoted

$$
\operatorname{Tor}(M)=\{m \in M \mid r m=0 \text { for some nonzero } r \in R\} .
$$

(a) Prove that if R is an integral domain then $\operatorname{Tor}(M)$ is a left submodule of M.
(b) Give an example of a ring R and an R-module M such that $\operatorname{Tor}(M)$ is not a submodule.
(c) If R has zero divisors show that every nonzero R-module has nonzero torsion elements.

