Math 230B: Algebra Final Exam Thursday, March 23, 2023.

NAME:

- You have **two hours** for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used. Do not use a calculator.
- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.

(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	
1 (10 Points)	
2 (10 Points)	
3 (10 Points)	
4 (10 Points)	
5 (10 Points)	
Total	

Problems	
6 (10 Points)	
7 (10 Points)	
8 (10 Points)	
9 (10 Points)	
10 (10 Points)	
Total	

Problems

1. Let K be a field and let A be an $n \times n$ matrix with entries in K. Suppose that $f \in K[x]$ is an irreducible polynomial such that f(A) = 0. Prove that $\deg(f) \mid n$. 2. Let A be a finite abelian group of order n. What is the cardinality of $\mathbb{Q} \otimes_{\mathbb{Z}} A$? Prove that your answer is correct. 3. Is $\mathbb Q$ is a free $\mathbb Z\text{-module}?$ Prove that your answer is correct.

4. Let R be a UFD and let α be an irreducible element of R. Prove that α is prime.

5. Is every Euclidean domain a PID? Either prove that the answer is yes or give an example to show that the answer is no (and explain why your example works).

6. Let V be a vector space of dimension n over a field F. Let W be a subspace of V of dimension m. Let s be the dimension of the vector space V/W. Prove that m + s = n.

Note: Do not use the Rank-Nullity theorem for linear transformations to prove this statement. (We used this statement to prove the Rank-Nullity theorem.)

- 7. (a) Let R be a commutative ring with $1 \neq 0$ and let M be an R-module. Define Ann(M), the annihilator of M.
 - (b) Prove that Ann(M) is an ideal of R.
 - (c) Let R be a PID, let B be a torsion R-module and let p be a prime in R. Prove that if pb = 0 for some nonzero $b \in B$, then $Ann(B) \subseteq (p)$.

- 8. (a) How many similarity classes of 4×4 matrices A with entries in \mathbb{R} satisfy $A^3 = I$? Explain how you know this number is correct.
 - (b) Give an example of one matrix in each of these similarity classes.

- 9. For each of the following rings, list all of its maximal ideals. Prove that your list is complete.
 - (a) $\mathbb{Q}[x]/(x^2+1)$
 - (b) $\mathbb{C}[x]/(x^2+1)$
 - (c) $\mathbb{Q}[x]/(x^3+x^2)$.

10. Let F be a field and let G be a finite subgroup of F^* . Prove that G is cyclic.