Math 230B: Algebra
 Final Exam Solutions

Thursday, March 23, 2023.

Problems

1. Let K be a field and let A be an $n \times n$ matrix with entries in K.

Suppose that $f \in K[x]$ is an irreducible polynomial such that $f(A)=0$.
Prove that $\operatorname{deg}(f) \mid n$.
Solution: Since $f(A)=0$ the minimal polynomial of $m_{A}(x)$ divides $f(x)$. Since $f(x)$ is irreducible, $f(x)$ must be the minimal polynomial of A.
The minimal polynomial of A is the largest invariant factor of A, that is, every other invariant factor divides $m_{A}(x)$. Since $m_{A}(x)=f(x)$ is irreducible and each invariant factor has degree at least 1 , every invariant factor of A is equal to $f(x)$.
The characteristic polynomial of A is the product of all of the invariant factors of A, and its degree is n. Since every invariant factor is equal to $f(x)$, taking degrees with see that n equal the degree of f times the number of invariant factors of A. We conclude that $\operatorname{deg}(f) \mid n$.
2. Let A be a finite abelian group of order n. What is the cardinality of $\mathbb{Q} \otimes_{\mathbb{Z}} A$? Prove that your answer is correct.
Solution: Since elementary tensors generate $\mathbb{Q} \otimes_{\mathbb{Z}} A$, if we show that every elementary tensor in $\mathbb{Q} \otimes_{\mathbb{Z}} A$ is trivial, then we can conclude that $\mathbb{Q} \otimes_{\mathbb{Z}} A$ is trivial. (So it has cardinality one.)
Let $\frac{a}{b} \in \mathbb{Q}$ and $x \in A$. Since A has order n we have $n \cdot x=0$. By the elementary properties of tensor products we have

$$
\frac{a}{b} \otimes x=n \cdot\left(\frac{a}{b n} \otimes x\right)=\frac{a}{b n} \otimes(n \cdot x)=\frac{a}{b n} \otimes 0=0 .
$$

3. Is \mathbb{Q} is a free \mathbb{Z}-module? Prove that your answer is correct.

Solution: A \mathbb{Z}-module is free if it contains a spanning set that is linearly independent. We prove that \mathbb{Q} is not a free \mathbb{Z}-module.
In any R-module M since $1 \cdot 0=0,\{0\}$ is an R-linearly dependent set. Also, if $\left\{m_{1}, \ldots, m_{n}\right\}$ is an R-linearly dependent set and $A \subset M$ contains $\left\{m_{1}, \ldots, m_{n}\right\}$, then A is R-linearly dependent as well. This is because, the nonzero R-linear combination $r_{1} \cdot m_{1}+\cdots+r_{n} \cdot m_{n}=0$ gives a nonzero R-linear combination $r_{1} \cdot m_{1}+\cdots+r_{n} \cdot m_{n}+\sum_{a \in A} 0 \cdot a=0$.

We now show that any two elements of \mathbb{Q} are \mathbb{Z}-linearly dependent. By the previous paragraph, we can assume that both elements are nonzero. Suppose $\frac{a}{b}, \frac{c}{d}$ are two nonzero elements of \mathbb{Q}. This means $a, b, c, d \neq 0$. Since

$$
(b c) \cdot \frac{a}{b}+(-a d) \cdot \frac{c}{d}=0
$$

and $b c,-a d \neq 0$, we see that these elements are \mathbb{Z}-linearly dependent.
Therefore, \mathbb{Q} does not contain any \mathbb{Z}-linearly independent set of size at least 2 . We show that \mathbb{Q} does not contain a spanning set of size 1 . This will complete the proof.
Suppose $\frac{a}{b} \in \mathbb{Q}$. The \mathbb{Z}-module spanned by $\frac{a}{b}$ consists of elements of the form $n \cdot \frac{a}{b}$ where $n \in \mathbb{Z}$. It is clear that none of these elements have a denominator larger than b. Since \mathbb{Q} contains elements with arbitrarily large denominators, we see that $\frac{a}{b}$ does not span \mathbb{Q} as a \mathbb{Z}-module.
4. Let R be a UFD and let α be an irreducible element of R. Prove that α is prime.

Solution: Consider (α). We want to show that this is prime. Suppose $\beta, \gamma \in R$ such that $\beta \gamma \in(\alpha)$. This is equivalent to $\alpha \mid \beta \gamma$. This implies that there exists $\delta \in R$ such that $\alpha \delta=\beta \gamma$.
Since R is a UFD we can factor β and γ into finite products of irreducible elements $\beta=p_{1} \cdots p_{r}$ and $\gamma=q_{1} \cdots q_{s}$, where each p_{i}, q_{j} is irreducible in R. Since R is a UFD, these factorizations are unique up to reordering and associates.
Since α is irreducible and divides the left-hand side of the equation $\alpha \delta=\beta \gamma$, it must divide the right-hand side as well. Since $\beta \gamma=p_{1} \cdots p_{r} q_{1} \cdots q_{s}$ there either exists some p_{i} or some q_{j} that is associate to α. Without loss of generality, suppose there is some p_{i} associate to α. This means that $\alpha \mid \beta$.
We conclude that $\beta \gamma \in(\alpha)$ implies $\beta \in(\alpha)$ or $\gamma \in(\alpha)$, so α is a prime element.
5. Is every Euclidean domain a PID? Either prove that the answer is yes or give an example to show that the answer is no (and explain why your example works).
Solution: Let I be an ideal of R. We claim that I is the principal ideal generated by any nonzero element of R of minimal norm. Suppose $\alpha \in I$ has minimal norm among all nonzero elements of R. Clearly $(\alpha) \subseteq I$. We show that $I \subseteq R$, completing the proof.
Let $\beta \in I$. Our goal is to show that $\beta \in(\alpha)$. By the division algorithm in R we have $\beta=q \alpha+r$ for some $q, r \in R$ where either $r=0$ or $N(r)<N(\alpha)$. Since $\alpha \in I$ we have $q \alpha \in I$. Since $\beta, q \alpha \in I$ we have $\beta-q \alpha=r \in I$.
If $r \neq 0$, then $N(r)<N(\alpha)$. But this contradicts the assumption that α has minimal norm among all nonzero elements of I. Therefore, $r=0$. This implies $\beta=q \alpha$, so $\beta \in(\alpha)$.
6. Let V be a vector space of dimension n over a field F. Let W be a subspace of V of dimension m. Let s be the dimension of the vector space V / W. Prove that $m+s=n$.

Note: Do not use the Rank-Nullity theorem for linear transformations to prove this statement. (We used this statement to prove the Rank-Nullity theorem.)
Solution: Let w_{1}, \ldots, w_{m} be a basis for W. There exists a basis of V of the form $w_{1}, \ldots, w_{m}, v_{m+1}, \ldots, v_{n}$.
Let $\pi: V \rightarrow V / W$. Since $w_{1}, \ldots, w_{m}, v_{m+1}, \ldots, v_{n}$ generate V, we see that the vectors $\pi\left(w_{1}\right), \ldots, \pi\left(w_{m}\right), \pi\left(v_{m+1}\right), \ldots, \pi\left(v_{n}\right)$ generate V / W. Since $\pi\left(w_{1}\right), \ldots, \pi\left(w_{m}\right)=0$ we see that $\pi\left(v_{m+1}\right), \ldots, \pi\left(v_{n}\right)$ are a spanning set of V / W of size $n-m$. We need only show that they are linearly independent.
Suppose that $\alpha_{m+1}, \ldots, \alpha_{n} \in F$ are such that

$$
\alpha_{m+1} \cdot \pi\left(v_{m+1}\right)+\cdots+\alpha_{n} \cdot \pi\left(v_{n}\right)=0
$$

This is equivalent to saying that

$$
\alpha_{m+1} \cdot v_{m+1}+\cdots+\alpha_{n} \cdot v_{n}=w
$$

for some vector $w \in W$. Since $w \in W$, there exist $\alpha_{1}, \ldots, \alpha_{m} \in F$ such that

$$
w=\alpha_{1} \cdot w_{1}+\cdots+\alpha_{m} \cdot w_{m} .
$$

This implies

$$
\alpha_{1} \cdot w_{1}+\cdots+\alpha_{m} \cdot w_{m}-\left(\alpha_{m+1} \cdot v_{m+1}+\cdots+\alpha_{n} \cdot v_{n}\right)=0
$$

Since $w_{1}, \ldots, w_{m}, v_{m+1}, \ldots, v_{n}$ are linearly independent, this implies $\alpha_{m+1}=\cdots=\alpha_{n}=0$. We conclude that $\pi\left(v_{m+1}\right), \ldots, \pi\left(v_{n}\right)$ are linearly independent, completing the proof.
7. (a) Let R be a commutative ring with $1 \neq 0$ and let M be an R-module. Define $\operatorname{Ann}(M)$, the annihilator of M.
(b) Prove that $\operatorname{Ann}(M)$ is an ideal of R.
(c) Let R be a PID, let B be a torsion R-module and let p be a prime in R. Prove that if $p b=0$ for some nonzero $b \in B$, then $\operatorname{Ann}(B) \subseteq(p)$.
Solution: $\operatorname{Ann}(M)$ is the set of all $r \in R$ such that $r \cdot m=0$ for all $m \in M$.
It is clear that $0 \in \operatorname{Ann}(M)$. Suppose $x, y \in \operatorname{Ann}(M)$. Since $(x-y) \cdot m=x \cdot m-y \cdot m=0$, we see that $x-y \in \operatorname{Ann}(M)$. Therefore, $\operatorname{Ann}(M)$ is an additive subgroup of R.
Since $(r x) \cdot m=r \cdot(x \cdot m)=r \cdot 0=0$, we see that $r x \in \operatorname{Ann}(M)$ for any $r \in R$. Therefore, $\operatorname{Ann}(M)$ is an ideal of R.

Since R is a PID and $\operatorname{Ann}(B)$ is an ideal of R, we have $\operatorname{Ann}(B)=(\alpha)$ for some $\alpha \in R$. So $\operatorname{Ann}(B) \subseteq(p)$ is equivalent to $(\alpha) \subseteq(p)$, which is equivalent to $p \mid \alpha$.
We have $\alpha \cdot b=0$ and so $(r \alpha) \cdot b=r \cdot(\alpha \cdot b)=0$ for all $r \in R$. Similarly, $(s p) \cdot b=s \cdot(p \cdot b)=0$ for all $s \in R$. We see that $(r \alpha+s p) \cdot b=(r \alpha) \cdot b+s p \cdot b=0+0=0$ for all $r, s \in R$. This means that $x \cdot b=0$ for all elements in the ideal of R generated by α and p. This is the ideal generated by the greatest common divisor of α and p. Either, this is (p), in which case $p \mid \alpha$ and we are done, or this is $(1)=R$. But since $1 \cdot b \neq 0$, this is not possible.
8. (a) How many similarity classes of 4×4 matrices A with entries in \mathbb{R} satisfy $A^{3}=I$?

Explain how you know this number is correct.
(b) Give an example of one matrix in each of these similarity classes.

Solution: Two 4×4 matrices with entries in \mathbb{R} are similar if and only if they have the same set of invariant factors.
If $A^{3}=I$ then the minimal polynomial of A divides $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$. Since $x^{2}+x+1$ has no roots in \mathbb{R} it is irreducible in $\mathbb{R}[x]$. The minimal polynomial of A is its largest invariant factor and the characteristic polynomial of A is the product of all of the invariant factors. The degree of the characteristic polynomial is 4 , the size of the matrix.
We divide up the possible sets of invariant factors based on the minimal polynomial.
(a) Suppose that $m_{A}(x)=x-1$. Then every invariant factor is $x-1$, so there must be 4 of them: $(x-1, x-1, x-1, x-1)$.
(b) Suppose that $m_{A}(x)=x^{2}+x+1$. Since this polynomial is irreducible in $\mathbb{R}[x]$, every other invariant factor must be equal to $m_{A}(x)$. Therefore, there are two of them: $\left(x^{2}+\right.$ $\left.x+1, x^{2}+x+1\right)$
(c) Suppose that $m_{A}(x)=(x-1)\left(x^{2}+x+1\right)$. The product of the other invariant factors must have degree 1 , so there is exactly one more and it must be linear. Since every invariant factor divides $m_{A}(x)$, it must be $x-1$. Therefore, the invariant factors are: $\left(x-1,(x-1)\left(x^{2}+x+1\right)\right)$.

These are the only possible sets of invariant factors of A, so these are all the similarity classes.
The companion matrix of $x-1$ is (1).
The companion matrix of $x^{2}+x+1$ is $\left(\begin{array}{cc}0 & -1 \\ 1 & -1\end{array}\right)$.
The companion matrix of $(x-1)\left(x^{2}+x+1\right)=x^{3}-1$ is $\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.

We write down a matrix having each of the sets of invariant factors given above that is in rational canonical form. These are

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

9. For each of the following rings, list all of its maximal ideals.

Prove that your list is complete.
(a) $\mathbb{Q}[x] /\left(x^{2}+1\right)$
(b) $\mathbb{C}[x] /\left(x^{2}+1\right)$
(c) $\mathbb{Q}[x] /\left(x^{3}+x^{2}\right)$.

Solution: We recall that if F is a field, $F[x]$ is a PID. So every ideal is of the form $(f(x))$, and scaling by a unit if necessary, we see that we can assume that $f(x)$ is monic. Moreover, since we are in a PID, $f(x)$ is irreducible if and only if it is prime, and prime ideas are maximal. Therefore, a major step in this problem is to factor each polynomial into a product of monic irreducible polynomials.
In $\mathbb{Q}[x]$ we see that $x^{2}+1$ is irreducible since it is a quadratic polynomial with no roots in \mathbb{Q}. Therefore, $\mathbb{Q}[x] /\left(x^{2}+1\right)$ is a field. The only ideals of a field are the trivial ideal (which is maximal), and the field itself. Therefore, the only maximal ideal is $\{0\}$.
In $\mathbb{C}[x]$ we see that $x^{2}+1=(x-i)(x+i)$. Each of these monic polynomials is irreducible. By the lattice isomorphism theorem for rings, ideals of $\mathbb{C}[x] /((x-i)(x+i))$ correspond to ideals of $\mathbb{C}[x]$ that contain $(x-i)(x+i)$. In $F[x]$ we have $(g(x))$ contains $(f(x))$ if and only if $g(x) \mid f(x)$. Therefore, the only ideals of $\mathbb{C}[x] /((x-i)(x+i))$ are the trivial one, the whole ring, and the two ideals $(x-i)$ and $(x+i)$. We see that these last two ideals are the only maximal ones.

In $\mathbb{Q}[x]$ we have $x^{3}+x^{2}=x^{2}(x+1)$. By the same argument as in the previous paragraph, ideals in $\mathbb{Q}[x] /\left(x^{3}+x^{2}\right)$ correspond to monic factors of $x^{2}(x+1)$, and the maximal ideals correspond to irreducible monic factors of $x^{2}(x+1)$. Therefore, the only maximal ideals of $\mathbb{Q}[x] /\left(x^{3}+x^{2}\right)$ are (x) and $(x+1)$.
10. Let F be a field and let G be a finite subgroup of F^{*}. Prove that G is cyclic.

Solution: G is a finite abelian group, so by the classification theorem for finitely generated abelian groups, there exist integers n_{1}, \ldots, n_{r} such that

$$
G \cong \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{r} \mathbb{Z}
$$

where each n_{j} is at least 2 and that satisfy $n_{i+1} \mid n_{i}$ for each $i \in 1, \ldots, r-1$. Our goal is to show that $r=1$, which is equivalent to saying that G is cyclic.
The elements of G of order dividing n_{r} are all roots of the polynomial $x^{n_{r}}-1$ in F. Since this is a polynomial of degree n_{r} in $F[x]$, it has at most n_{r} distinct roots in F.
Consider the group $\mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{r} \mathbb{Z}$. A cyclic group $\mathbb{Z} / m \mathbb{Z}$ where $n_{r} \mid m$ contains a unique subgroup isomorphic to $\mathbb{Z} / n_{r} \mathbb{Z}$. This subgroup consists of the n_{r} elements of $\mathbb{Z} / m \mathbb{Z}$ of order dividing n_{r}. In this way, we see that $\mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{r} \mathbb{Z}$ contains at least $r n_{r}$ elements of order dividing n_{r}. This contradicts the previous paragraph unless $r=1$.

