Math 230B: Algebra Midterm #1 Wednesday, February 1, 2023.

- You have **90 minutes** for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used. Do not use a calculator.
- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.

(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	Problems
1 (10 Points)	5 (10 Points)
2 (6 Points)	6 (12 Points)
3 (4 Points)	7 (6 Points)
4 (10 Points)	8 (10 Points)
Total	Total

Problems

- 1. (a) Define Unique Factorization Domain (UFD).
 - (b) Define Principal Ideal Domain (PID).
 - (c) For the properties "UFD" and "PID" give an example of an integral domain that
 - i. satisfies both properties,
 - ii. satisfies neither property,
 - iii. satisfies one property but not the other.

Note: You only need to give one example each for (i), (ii), and (iii). You do not need to prove that they have these properties.

2. Factor 1300 into a product of irreducible elements in $\mathbb{Z}[i]$.

3. Prove that $x^6 + 30x^5 - 15x^3 + 6x - 120$ is irreducible in $\mathbb{Z}[x]$.

4. Let R be a commutative ring in which every ideal is finitely generated. Prove that if there is an infinite sequence of ideals in R satisfying

$$I_1 \subseteq I_2 \subseteq \cdots$$

then there is some m such that $I_k = I_m$ for all $k \ge m$.

5. Let R be a PID and $\alpha \in R$ be a nonzero nonunit element. Prove that α has at least one irreducible factor in R.

Note: Do not use the fact that every PID is a UFD. The statement you are proving here is one piece of the proof that every PID is a UFD.

6. (a) Determine whether the rings $(\mathbb{Z}/5\mathbb{Z})[x]/(x^2+1)$ and $(\mathbb{Z}/5\mathbb{Z})[x]/(x^2+2)$ are isomorphic.

(b) Prove that $\mathbb{Z}[x]/(3, x^3 - 1)$ is isomorphic to $(\mathbb{Z}/3\mathbb{Z})[x]/(x^3 - 1)$.

(c) Give a complete list of the maximal ideals in the ring $(\mathbb{Z}/3\mathbb{Z})[x]/(x^3-1)$. Explain how you know your list is complete. 7. Let $R = \mathbb{Z}/n\mathbb{Z}$ where n is a positive integer. Is it necessarily true that a polynomial $f(x) \in R[x]$ with degree d has at most d distinct roots in R? Explain your answer. 8. Prove that $\mathbb{Z}[\sqrt{10}]$ is not a UFD.