Math 230B: Algebra
 Midterm \#2

Wednesday, March 1, 2023.

- You have 90 minutes for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used.

Do not use a calculator.

- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.
(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	
$\mathbf{1}$ (6 Points)	
$\mathbf{2}$ (10 Points)	
$\mathbf{3}$ (10 Points)	
$\mathbf{4}$ (10 Points)	
$\mathbf{5}$ (10 Points)	
$\mathbf{6}$ (10 Points)	
Total	

Problems

1. (a) Let R be a commutative ring with $1 \neq 0$, let M be an R-module, and let $A \subset M$. Define what it means for A to span the R-module M.
(Equivalently, we could ask what it means for $R A=M$.)
(b) Let R be a commutative ring with $1 \neq 0$ and M, N be nontrivial R-modules. We know that $M \otimes_{R} N$ is spanned as an R-module by elementary tensors. Prove that every element of $M \otimes_{R} N$ is a finite sum of elementary tensors.
2. Let R be an integral domain and let M be an R-module. Recall that $\operatorname{Tor}(M)$ denotes all $m \in M$ such that there exists $r \in R \backslash\{0\}$ such that $r \cdot m=0$. An R-module M is called torsion-free if $\operatorname{Tor}(M)=\{0\}$.
(a) Prove that $\operatorname{Tor}(M)$ is an R-submodule of M.
(b) Prove that $M / \operatorname{Tor}(M)$ is torsion-free.
3. Suppose V is a finite-dimensional vector space over a field F. Let $\mathrm{GL}(V)$ be the group of all invertible linear transformations from V to itself. Suppose G is a subgroup of GL (V), and define the ring

$$
\begin{aligned}
R= & \text { \{all linear transformations } T: V \rightarrow V \\
& \text { such that } T(g(v))=g(T(v)) \text { for every } g \in G \text { and } v \in V\} .
\end{aligned}
$$

Suppose further that if W is any subspace of V such that $g(W) \subseteq W$ for every $g \in G$, then either $W=0$ or $W=V$.
Prove that if $T \in R$ and T is not the zero transformation, then T is invertible and $T^{-1} \in R$. Hint: If $T \in R$, what can you say about the kernel and image of T ?
4. Suppose V is a vector space over a field F and that $T: V \rightarrow V$ is a linear transformation. Suppose that $v \in V$ and m is a positive integer such that $T^{m-1}(v) \neq 0$ and $T^{m}(v)=0$. Prove that $v, T(v), T^{2}(v), \ldots, T^{m-1}(v)$ are linearly independent.
5. Let R be a commutative ring with a $1 \neq 0$ and M any (unital) R-module. Prove that $R \otimes_{R} M \cong M$.
6. Let R be a commutative ring with $1 \neq 0$.

Prove that $R[x]$ is not a finitely generated R-module.

