Subgroups of A_4

The alternating group A_4 is written in cycle notation as follows:

$$A_4 = \{ e, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243) \}.$$

We find its subgroups.

By Lagrange’s Theorem, the proper subgroups of A_4 can only have orders 1, 2, 3, 4 or 6. Looking first for cyclic subgroups, we see that A_4 has one element of order 1 (e), three of order 2 (the pairs of disjoint transpositions), and eight of order 3. There are thus no cyclic subgroups of order 4 or 6. Indeed the only cyclic subgroups of A_4 are the following:

$$C_1 = \{ e \},$$
$$C_2 \cong \{ e, (12)(34) \} \cong \{ e, (13)(24) \} \cong \{ e, (14)(23) \},$$
$$C_3 \cong \{ e, (123), (132) \} \cong \{ e, (124), (142) \} \cong \{ e, (134), (143) \} \cong \{ e, (234), (243) \}.$$

We are left with the possibility of non-cyclic subgroups of orders 4 or 6, i.e. either the Klein 4-group V or the symmetric group S_3. V consists of the identity plus three elements of order 2. There are only three elements of order 2 in A_4 and indeed you can check by multiplying out that the identity together with the three pairs of disjoint 2-cycles forms a group:

$$V \cong \{ e, (12)(34), (13)(24), (14)(23) \}.$$

Now consider the possibility of S_3 being a subgroup of A_4. S_3 consists of the identity, three elements of order 2, and two elements of order 3. However, there are only three elements of order 2 in A_4, so if S_3 was a subgroup of A_4 then these elements must be in S_3. However this means that the subgroup V given above is in S_3; a contradiction of Lagrange, since $4 = |V|$ is not a divisor of $6 = |S_3|$.

The full subgroup diagram of A_4 is as follows:

In particular there is no subgroup of order 6, showing that the converse to Lagrange’s Theorem is false:

$$6 \mid |A_4| \not \Rightarrow \exists H \leq A_4 \text{ with } |H| = 6$$