A Brief Review of Complex Number Notation

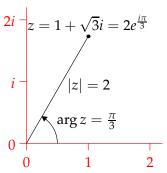
The complex numbers $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}$ are the real vector space \mathbb{R}^2 spanned by a basis $\{1, i\}$ where $i^2 = -1$ is a 'number' satisfying $i^2 = -1$. To multiply complex numbers, simply expand out and replace i^2 with -1: for example

$$(2+3i)(1-i) = 2-i+3i-3i^2 = 2+2i+3=5+2i$$

Complex conjugate: Given a complex number $z = x + iy \in \mathbb{C}$, its *conjugate* $\overline{z} = x - iy$ is the reflection of z in the real axis.

Modulus (length): $r=|z|=\sqrt{z\overline{z}}=\sqrt{x^2+y^2}$ is the distance of z from the origin.

Argument (angle): If $z \neq 0$, then $\theta = \arg z$ is the angle measured counter-clockwise from the positive real axis to the ray $\overrightarrow{0z}$.



Polar form: $z = re^{i\theta} = r\cos\theta + ir\sin\theta$. The complex exponential obeys the usual exponential laws and is $2\pi i$ -periodic: for instance

•
$$e^{i\theta}e^{i\psi}=e^{i(\theta+\psi)}$$

•
$$e^{i\theta} = 1 \iff \theta = 2\pi k$$
 for some integer k

The modulus and argument are the usual polar co-ordinates of a point in \mathbb{R}^2 . The exponential laws show that the polar form behaves nicely with respect to complex multiplication:

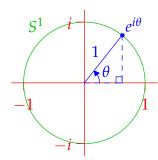
$$|zw| = |z| |w|$$
 and $\arg(zw) \equiv \arg z + \arg w \pmod{2\pi}$

Euler's Formula & the Unit Circle: When r = 1 we have *Euler's formula:*

$$e^{i\theta} = \cos\theta + i\sin\theta$$

the source of the famous identity $e^{i\pi}=-1$. These complex numbers comprise the unit circle

$$S^{1} = \{ z \in \mathbb{C} : |z| = 1 \} = \{ e^{i\theta} : \theta \in [0, 2\pi) \}$$



Rotations: Let θ be a fixed real number. The complex function $\operatorname{rot}_{\theta}(z) = e^{i\theta}z$ has the effect of *rotating* z about the origin by θ radians. To see why, write $z = re^{i\psi}$ in polar form and observe that

$$\operatorname{rot}_{\theta}(z) = e^{i\theta} r e^{i\psi} = r e^{i(\theta + \psi)}$$

has the *same modulus r*, but has had θ *radians added to its modulus*. For this reason, the unit circle S^1 can be thought of as the set of *rotations around the origin*.