Sketch Notes — Rings and Fields

Neil Donaldson

Fall 2018

Text

- An Introduction to Abstract Algebra, John Fraleigh, 7th Ed 2003, Adison-Wesley (optional).

Brief reminder of groups

You should be familiar with the majority of what follows though there is a lot of time to remind yourself of the harder material! Try to complete the proofs of any results yourself.

Definition. A binary structure ($G, \cdot \cdot$) is a set G together with a function $\cdot: G \times G \rightarrow G$. We say that G is closed under \cdot and typically write \cdot as juxtaposition ${ }^{1}$
A semigroup is an associative binary structure:

$$
\forall x, y, z \in G, x(y z)=(x y) z
$$

A monoid is a semigroup with an identity element:

$$
\exists e \in G \text { such that } \forall x \in G, e x=x e=x
$$

A group is a monoid in which every element has an inverse:

$$
\forall x \in G, \exists x^{-1} \in G \text { such that } x x^{-1}=x^{-1} x=e
$$

A binary structure is commutative if $\forall x, y \in G, x y=y x$. A group with a commutative structure is termed abelian.
A subgroup ${ }^{2}$ is a non-empty subset $H \subseteq G$ which remains a group under the same binary operation. We write $H \leq G$.

Lemma. H is a subgroup of G if and only if it is a non-empty subset of G closed under multiplication and inverses in G.

Standard examples of groups: sets of numbers under addition $(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, n \mathbb{Z}$, etc.), matrix groups. Standard families: cyclic, symmetric, alternating, dihedral.

[^0]
Cosets and Factor Groups

Definition. If $H \leq G$ and $g \in G$, then the left coset of H containing G is the set

$$
g H=\{g h: h \in H\}
$$

Clearly $k \in g H \Longleftrightarrow \exists h \in H$ such that $k=g h \Longleftrightarrow k^{-1} g \in H$.
The right coset $H g$ is defined similarly.
A subgroup H of G is normal (written $H \triangleleft G$) if $g H=H g$ for all $g \in G$.
Lemma. $H \triangleleft G \Longleftrightarrow \forall g \in G, h \in H$ we have $g h g^{-1} \in H$
Theorem. The set of (left) cosets of $H \triangleleft G$ has a natural group structure defined by $g_{1} H \cdot g_{2} H:=\left(g_{1} g_{2}\right) H$. We call this the factor group G / H.
Definition. For each $n \in \mathbb{N}$, we define $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$.

Homomorphisms

Definition. A function $\phi:(G, \cdot) \rightarrow(H, \star)$ of binary structures is a homomorphism if

$$
\forall x, y \in G, \quad \phi(x \cdot y)=\phi(x) \star \phi(y)
$$

An isomorphism is a bijective homomorphism: we write $G \cong H$ if there exists an isomorphism from G to H.
If ϕ is a homomorphism of groups, then its kernel and image are the sets

$$
\operatorname{ker} \phi=\{g \in G: \phi(g)=e\} \quad \operatorname{Im} \phi=\{\phi(g): g \in G\}
$$

Lemma. $\operatorname{ker} \phi \triangleleft G$.
Theorem ($1^{\text {st }}$ isomorphism theorem). 1. If $\phi: G \rightarrow H$ is a homomorphism, then $G / \operatorname{ker} \phi^{\cong} \operatorname{Im} \phi$ via the isomorphism

$$
\mu(g H):=\phi(g)
$$

2. If $H \triangleleft G$ then $\gamma: G \rightarrow G / H$ defined by $\gamma(g)=g H$ is a homomorphism, whence every factor group appears as in part 1.

Example Let $\zeta=e^{\frac{2 \pi i}{9}}$ and define

$$
\phi: \mathbb{Z} \rightarrow \mathbb{C}: x \mapsto \zeta^{x}
$$

This is a homomorphism with kernel $\operatorname{ker} \phi=9 \mathbb{Z}$: the $1^{\text {st }}$ isomorphism theorem reads

$$
\mathbb{Z} / 9 \mathbb{Z} \cong \operatorname{Im} \phi=\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{8}\right\}
$$

which is the multiplicative group of $9^{\text {th }}$ roots of unity.

18 Rings and Fields

Definition 18.1. A ring is a set R with two binary operations + and \cdot (always called addition and multiplication) for which:

1. $(R,+)$ is an abelian group.
2. (R, \cdot) is a semigroup (R is closed under \cdot and \cdot is associative).
3. The left and right distributive laws hold:

$$
\forall x, y, z \in R, x \cdot(y+z)=x \cdot y+x \cdot z \quad \text { and } \quad(x+y) \cdot z=x \cdot z+y \cdot z
$$

A ring is simply an abelian group (axiom 1) with a bit of extra structure that making it behave similarly to the integers: we have a notion of multiplication (axiom 2) which interacts with addition (axiom 3) in the expected way. Rings often feel easier than groups because they behave so similarly to the familiar integers.

Definition 18.2. A ring $(R,+, \cdot)$ is commutative if \cdot is commutative.

Simple Examples

- Sets of numbers: $\mathbb{Z}, n \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ with the usual addition and multiplication. These are all commutative rings.
- The set of polynomials $R[x]$ whose coefficients lie in some ring R. The addition and multiplication are inherited from that of R. For instance, if $R=\mathbb{Z}$, then

$$
\left(1+3 x^{2}\right)\left(2 x-4 x^{2}\right)=2 x-4 x^{2}+6 x^{3}-12 x^{4}
$$

$R[x]$ will be commutative precisely when R is commutative. More generally, the set of functions $f: R \rightarrow R$ also forms a ring using the addition and multiplication of elements in R.

- The set $M_{n}(R)$ of $n \times n$ matrices whose entries lie in a ring R. Typically $M_{n}(R)$ is a noncommutative ring, regardless of whether R is commutative.
- The quaternions are the set

$$
\mathcal{Q}=\left\{w+i x+j y+k z: w, x, y, z \in \mathbb{R}, i^{2}=j^{2}=k^{2}=-1, i j=k \text { etc. }\right\}
$$

Think of this like a copy of \mathbb{R}^{4} with basis $\{1, i, j, k\}$. Addition is the usual addition in \mathbb{R}^{4}. Multiplication works as with the complex numbers: i, j and k act like three different copies of the imaginary unit i. Finally, distinct elements i, j, k multiply following the right-hand rule for cross-products:

$$
i j=k=-j i, \quad j k=i=-k j, \quad k i=j=-i k
$$

It is a little work to check that (\mathcal{Q}, \cdot) is associative. Since, e.g., $i j=-j i$, we have a noncommutative ring.

- The factor rings $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ are defined in the same manner as for groups: we will do this more formally later. It is perfectly acceptable to write

$$
\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}
$$

as long as you appreciate that the symbol x refers to the equivalence class of integers

$$
[x]=\{x+\lambda n: \lambda \in \mathbb{Z}\}
$$

- A direct product of rings $R_{1} \times \cdots \times R_{k}$ is defined exactly as for groups. For example, in the ring $\mathbb{Z} \times M_{2}(\mathbb{R})$ we could write

$$
\left(2,\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)\right) \cdot\left(-3,\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)\right)=\left(-6,\left(\begin{array}{ll}
2 & -3 \\
3 & -4
\end{array}\right)\right)
$$

Non-examples of rings

- The natural numbers \mathbb{N} do not form an abelian group under addition.
- $M_{m \times n}(R)$ (if $n \neq m$): multiplication is not well-defined.
- General vector spaces are not rings: there is no natural sense of product! You might suspect that $\left(\mathbb{R}^{3},+, \times\right)$ is a ring, where \times is the cross-product. However, observe that

$$
\mathbf{i} \times(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{k}=-\mathbf{j} \neq \mathbf{0}=(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}
$$

The product is not associative! Non-associative algebras are extremely important (Lie Algebras rule parts geometry and of Physics) but they are not rings.

Conventions

We've already started following some of these as the conventions are similar to those you are used to following from group theory.

- We will usually just say 'the ring R,' rather than $(R,+, \cdot)$, unless the operations are not clear.
- You should assume that R is a ring unless otherwise stated: e.g. $\mathbb{Z}, \mathbb{Z}_{n}$, etc., are always rings in this course. If we need to refer to the additive group of a ring, we will write $(R,+)$.
- Since $(R,+)$ is an abelian group, it is typical to denote the additive identity by 0 . Thus ${ }^{3}$

$$
\forall x \in R, 0+x=x
$$

We similarly denote additive inverses using negatives:

$$
\forall x \in R, x+(-x)=0
$$

[^1]- Use juxtaposition and exponentiation notation for multiplication unless in the dot is helpful: thus

$$
x \cdot x \cdot x=x x x=x^{3}
$$

- If n is a positive integer and $x \in R$, we will write

$$
n \cdot x=\underbrace{x+\cdots+x}_{n \text { times }}
$$

This requires a little care: if R is any ring and $x \in R$, we can always write, for instance

$$
3 \cdot x=x+x+x
$$

In the special case where $3 \in R$ (say if $R=\mathbb{Z}$), then $3 \cdot x=3 x$ since we really can multiply 3 by x within R. In general, however, this makes no sense: for example $3 x$ is meaningless within the ring $2 \mathbb{Z}$ of even integers, since $3 \notin 2 \mathbb{Z}$.

Basic Results The basic theorems regarding groups necessarily hold: we state these without proof.
Lemma 18.3. If $(R,+, \cdot)$ is a ring, then the additive identity 0 and additive inverses are unique. Moreover, the left- and right-cancellation laws hold:

$$
x+y=x+z \Longrightarrow y=z, \text { and } x+z=y+z \Longrightarrow x=y
$$

The first genuine results concerning rings involve the interaction of the additive identity with multiplication: essentially this first theorem tells us that 0 and negative signs behave exactly as we expect.
Theorem 18.4 (Laws of Signs). Let R be a ring:

1. $\forall x \in R, 0 x=x 0=0$
2. $\forall x, y \in R, x(-y)=(-x) y=-x y$
3. $\forall x, y \in R,(-x)(-y)=x y$

Proof. 1. Since $(R,+)$ is an additive group, we have $0=0+0$. Multiplying on the right by x and applying a distributive law yields

$$
0 x=(0+0) x=0 x+0 x
$$

Cancelling $0 x$ from both sides (Lemma 18.3) gives half the result; the remainder follows symmetrically.
2. Apply the distributive law to compute

$$
(x y)+(-x) y=(x+(-x)) y=0 y=0 \Longrightarrow-(x y)=(-x) y
$$

The other version of this is similar.
3. Finally, we apply the first and second results repeatedly:

$$
(-x)(-y)=-(x(-y))=-(-(x y))=x y
$$

Further multiplicative structure

Most commonly, we will consider rings where multiplication has more than simple associativity.
Definition 18.5. A ring R is a ring with 1 , or a ring with unity, if (R, \cdot) is a monoid (an associative binary structure with an identity). In such a case the ${ }^{4}$ unity, or multiplicative identity, is abstractly denoted 1.
If R is a ring with unity $1 \neq 0$, then an element $x \in R$ is a unit if it has a multiplicative inverse:

$$
x \text { a unit } \Longleftrightarrow \exists x^{-1} \in R \text { such that } x x^{-1}=x^{-1} x=1
$$

A ring with unity $1 \neq 0$ is a division ring or skew field is a ring with unity in which every non-zero element is a unit.
A field is a commutative division ring.
To a great many authors 'ring' means 'ring with unity $1 \neq 0$:' this assumption is made so often that it is easy to miss and guarantees that the ring has at least two elements. It is common to refer to a ring without unity as a rng (no i!), a pseudo-ring or a non-unital ring if clarity is required. For our purposes, a ring may or may not have a unity: when it does, we will make the standard assumption that $1 \neq 0$.

Examples

- \mathbb{Z} is a commutative ring with unity. The only units are ± 1.
- $n \mathbb{Z}$ has no identity if $n \geq 2$ and thus no units.
- \mathbb{Q}, \mathbb{R} and \mathbb{C} are fields.
- If R is a ring with unity, then so is $R[x]$: the multiplicative identity is the constant polynomial 1 . The set of functions $\{f: R \rightarrow R\}$ behaves similarly.
- $M_{n}(R)$ is a ring with unity if R is such: the identity matrix is exactly as you expect.
- The quaternions form a non-commutative division ring. To see this, note that we can define a modulus exactly as with complex numbers:

$$
|q|^{2}:=q \bar{q}=(w+i x+j y+k z)(w-i x-j y-k z)=w^{2}+x^{2}+y^{2}+z^{2}
$$

Clearly $|q|=0 \Longleftrightarrow q=0$, and $q^{-1}=\frac{\bar{q}}{|q|^{2}}$.
It is worth recalling some elementary number theory for our next result:
Theorem 18.6. $x \in \mathbb{Z}_{n}$ is a unit if and only if $\operatorname{gcd}(x, n)=1$. Thus \mathbb{Z}_{n} is a field if and only if n is prime.
Proof. Recall Bézout's identity:

$$
\operatorname{gcd}(x, n)=1 \Longleftrightarrow \exists \lambda, \mu \in \mathbb{Z} \text { such that } \lambda x+\mu n=1
$$

It should be clear that λ is an inverse to x in \mathbb{Z}_{n}.

[^2]Theorem 18.7. If R is a ring with unity, then the set of units $U \subseteq R$ forms a group under multiplication. Proof. If $u, v \in U$, quickly check that $v^{-1} u^{-1}$ is an inverse of $u v$, whence U is closed under multiplication. The associativity, identity and inverse axioms are essentially trivial.

The set of units is often denoted R^{\times}: for example,

$$
\mathbb{Z}_{10}^{\times}=\{1,3,7,9\}
$$

Notice that 3 is a generator of this group $(\langle 3\rangle=\{3,9,7,1\})$ and so $\mathbb{Z}_{10}^{\times} \cong \mathbb{Z}_{4}$ is cyclic \int^{5}

Homomorphisms and Isomorphisms

At first glance these work exactly as for groups. The first novelty is that they must preserve both binary structures:
Definition 18.8. Let R, S be rings. A function $\phi: R \rightarrow S$ is a homomorphism if

$$
\forall x, y \in R,\left\{\begin{array}{l}
\phi(x+y)=\phi(x)+\phi(y) \\
\phi(x y)=\phi(x) \phi(y)
\end{array}\right.
$$

Additionally, ϕ is an isomorphism if it is bijective. We write $R \cong S$ exactly as with isomorphic groups. It should be clear that $\phi:(R,+) \rightarrow(S,+)$ is automatically a homo/isomorphism of groups.
One delicacy ${ }^{6}$ is that, if both R, S are rings with unity, then it is common to additionally assume $\phi\left(1_{R}\right)=1_{S}$. This is not guaranteed! For example,

$$
\phi: \mathbb{Z} \rightarrow \mathbb{Z}: x \mapsto 0
$$

is a homomorphism, although it is extremely boring. Indeed, suppose that $\psi: \mathbb{Z} \rightarrow \mathbb{Z}$ is a homomorphism and compute

$$
\psi(1)=\psi(1 \cdot 1)=(\psi(1))^{2} \Longrightarrow \psi(1)=0 \text { or } 1
$$

Since we also require

$$
\forall x \in \mathbb{Z}^{+}, \psi(x)=\psi(1+1+\cdots+1)=\psi(1)+\cdots+\psi(1)=x \cdot \psi(1)
$$

and similarly for negative numbers, it follows that the only ring homomorphisms $\psi: \mathbb{Z} \rightarrow \mathbb{Z}$ are

$$
\psi(x)=0 \text { or } \psi(x)=x
$$

This is much more restrictive that with groups 7 Some of this discussion is worth generalizing:
Theorem 18.9. Suppose $\phi: R \rightarrow S$ is a homomorphism and R is a ring with unity. If $n \in \mathbb{Z}$, then

$$
\phi(n)=n \cdot \phi(1)
$$

In the general context when R does not contain integers, $n=\underbrace{1+\cdots+1}_{n \text { times }}$.

[^3]Proof. If $n=0$, this is simply the group theoretic result that $\phi\left(0_{R}\right)=0_{S}$: recall,

$$
\phi\left(0_{R}\right)=\phi\left(0_{R}+0_{R}\right)=\phi\left(0_{R}\right)+\phi\left(0_{R}\right) \Longrightarrow \phi\left(0_{R}\right)=0_{S}
$$

by cancellation. When $n \geq 1$ this is simple induction on n. Finally, when $n \leq-1$ the fact that $\phi(-n)=-\phi(n)$ (basic group theory again) finishes things off.

We are now in a position to extend our discussion of direct products of finite cyclic groups.
Corollary 18.10. $\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n} \Longleftrightarrow \operatorname{gcd}(m, n)=1$
Proof. Note that the result is already true for additive groups ${ }^{8}$ where we observed that $(1,1)$ is a generator of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ whenever $\operatorname{gcd}(m, n)=1$. This corresponds to the function

$$
\phi: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}: x \mapsto(x, x)
$$

being an isomorphism. It remains only to see that ϕ is also an isomorphism of rings. But this is trivial:

$$
\phi(x y)=(x y, x y)=(x, x) \cdot(y, y)=\phi(x) \cdot \phi(y)
$$

Example Find all isomorphisms $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{4}$.
Let $\phi(1)=(a, b)$: since ϕ is to be a homomorphism of additive groups, we see that

$$
\phi(x)=x \cdot \phi(1)=(a x, b x)
$$

To be an additive isomorphism, we need the order of (a, b) to be 12 , whence $\operatorname{gcd}(a, 3)=1=\operatorname{gcd}(b, 4)$. There are four group isomorphisms $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{4}$, corresponding to the generators

$$
(a, b)=(1,1),(1,3),(2,1),(2,3)
$$

To be a ring homomorphism, we also require

$$
\phi(x y)=(a x y, b x y)=\left(a^{2} x y, b^{2} x y\right)=(a x, b x) \cdot(a y, b y)=\phi(x) \cdot \phi(y)
$$

for all x, y. This clearly requires $a^{2} \equiv a \bmod 3$ and $b^{2} \equiv b \bmod 4$. Of the above choices, only $(a, b)=(1,1)$ works. There is therefore exactly one ring isomorphism.

The above can be generalized: Suppose that $\operatorname{gcd}(m, n)=1$ so that $\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$

- Every group isomorphism $\phi: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ has the form $\phi(x)=(a x, b x)$ where $\operatorname{gcd}(a, m)=$ $1=\operatorname{gcd}(b, n)$, so that $a \in \mathbb{Z}_{m}^{\times}$and $b \in \mathbb{Z}_{n}^{\times}$are both units.

[^4]- Every ring isomorphism must be a group isomorphism and additionally satisfy

$$
a^{2} \equiv a \quad \bmod m \quad \text { and } \quad b^{2} \equiv b \quad \bmod n
$$

Since a, b are already units, it follows that the only possibility is to have $a=1$ and $b=1$. There is always only one isomorphism!

Indeed this is a special case of a useful theorem.
Theorem 18.11. Having a unity is a structural property. Specifically, suppose that $\phi: R \rightarrow S$ is a ring isomorphism (or merely a surjective ring homomorphism) and that R is a ring with unity. Then S is a ring with unity and $1_{S}=\phi\left(1_{R}\right)$.
Proof. For all $x \in R$, we have

$$
\phi(x)=\phi\left(1_{R} x\right)=\phi\left(1_{R}\right) \phi(x)
$$

and similarly $\phi(x)=\phi(x) \phi\left(1_{R}\right)$. Since ϕ is surjective, it follows that $\phi\left(1_{R}\right) y=y=y \phi\left(1_{R}\right)$ for all $y \in S$.

In particular, if $\phi: R \rightarrow S$ is a surjective homomorphism where the $\operatorname{group}(R,+)$ is cyclic, then $\phi(x)=x \cdot 1_{s}$. In our previous example, we are forced to take $\phi(1)=(1,1)$ (the unity in $\left.\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right)$, whence $\phi(x)=(x, x)$.

Subrings

Just as with groups, we can define substructures.
Definition. Let $(R,+, \cdot)$ be a ring. A subset S is a subring of R if $(S,+, \cdot)$ is a ring. We have a similar notion for subfield.

Since every subring of R is necessarily a subgroup of $(R,+)$, we can start hunting for subrings by first considering subgroups.

Examples

1. Subrings of \mathbb{Z}. Every subgroup has the form $n \mathbb{Z}$ for some $n \in \mathbb{N}_{0}$. Since the set of multiples of n is closed under multiplication, these are also subrings.
In contrast to group theory, note that $\mathbb{Z} \not \not n \mathbb{Z}$ when $n \neq 1$. If we had an isomorphism, $\phi: \mathbb{Z} \rightarrow$ $n \mathbb{Z}$ then it must also be an isomorphism of groups, whence $\phi(1)$ would have to be a generator: the only options are $\phi(1)= \pm n \Longrightarrow \phi(x)= \pm n x$. But for this to be a ring isomorphism, we'd need

$$
\forall x, y \in \mathbb{Z}, \phi(x y)=\phi(x) \phi(y) \Longrightarrow \pm n x y=n x n y
$$

a contradiction.
2. A similar game can be played in \mathbb{Z}_{n}. Every subgroup of $\left(\mathbb{Z}_{n},+\right)$ has the form $\langle d\rangle=\{k d$: $k \in \mathbb{Z}\}$ where $d \mid n$. Since $(k d)(l d)$ is still a multiple of d, the subset $\langle d\rangle$ is closed under multiplication and is thus a subring. The subrings of \mathbb{Z}_{n} are therefore precisely the subgroups of \mathbb{Z}_{n}.
3. Warning! In general, not all subgroups of $(R,+)$ are going to be subrings of R. Take, for example, $\langle(1,2)\rangle \leq \mathbb{Z} \times \mathbb{Z}$ as the cyclic subgroup generated by $(1,2)$. This is not a subring of $\mathbb{Z} \times \mathbb{Z}$ since it is not closed under multiplication:

$$
(1,2) \cdot(1,2)=(1,4) \notin\langle(1,2)\rangle
$$

19 Integral Domains

The ability to factorize is of crucial importance in mathematics. For instance,

$$
\begin{equation*}
x^{2}=x \Longleftrightarrow x^{2}-x=0 \Longleftrightarrow x(x-1)=0 \Longleftrightarrow x=0, \text { or } 1 \tag{*}
\end{equation*}
$$

This calculation should feel completely natural, but is it always legitimate? Certainly we feel confident if x is restricted to the real or complex numbers. What about if $x \in \mathbb{Z}_{n}$ for some n ? We can easily find all the solutions to $x^{2} \equiv x \bmod n$ for all small n by inspection: here is what we find.

n	solutions x to $x^{2} \equiv x$
2	0,1
3	0,1
4	0,1
5	0,1
6	$0,1,3,4$
7	0,1
8	0,1
9	0,1
10	$0,1,5,6$

While the solutions are usually as expected, when $n=6$ or 10 we have extras! Indeed the extra solutions correspond to alternative factorizations: for example

$$
(x-5)(x-6) \equiv x^{2}-11 x+30 \equiv x^{2}-x \quad \bmod 10
$$

With a little thinking, it should become clear that we will never have this problem of multiple factorizations when n is a prime ${ }^{9}$ consider

$$
x(x-1) \equiv 0 \bmod p \Longleftrightarrow p|x(x-1) \Longleftrightarrow p| x \text { or } p \mid x-1 \Longleftrightarrow x \equiv 0,1 \bmod p
$$

This is because it is impossible to have non-zero remainders multiplying to give 0 . We make a general definition.

Definition 19.1. If $a, b \in R$ are non-zero elements for which $a b=0$, we say that a, b are zero-divisors.
For example, $2 \cdot 5=0 \in \mathbb{Z}_{10}, \quad 2 \cdot 3=0 \in \mathbb{Z}_{6}, \quad\left(\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right)\left(\begin{array}{cc}1 & -2 \\ -1 & 2\end{array}\right)=0 \in M_{2}(\mathbb{R})$.
Definition 19.2. An integral domain is a commutative ring with unity which has no zero-divisors.
The most obvious example of an integral domain is the integers themselves! Clearly $a b=0 \Longrightarrow$ $a=0$ or $b=0$. This is true for any of the standard rings of numbers: $\mathbb{Z}, \mathbf{Q}, \mathbb{R}, \mathbb{C}$. Indeed:

[^5]Theorem 19.3. Every field is an integral domain.
Proof. Every field is a commutative ring with unity. Moreover, if a is a zero-divisor, then it is a nonzero element and thus a unit. Clearly

$$
a b=0 \Longrightarrow b=0
$$

after multiplying by a^{-1} on the left (this is precisely th argument (\dagger) above. But then a is not a zerodivisor!

With finite domains, things are also very straightforward:
Lemma 19.4 (Cancellation laws). If R is a ring without zero divisors 4^{10} then

$$
\forall a \neq 0, \forall b, c, \quad a b=a c \Longrightarrow b=c \quad \text { and } \quad b a=c a \Longrightarrow b=c
$$

Proof. $a b=a c \Longrightarrow a(b-c)=0 \Longrightarrow a=0$ or $b-c=0$. Since $a \neq 0$ we conclude that $b=c$.
Theorem 19.5. Every finite integral domain is a field.
Proof. Suppose that R is a finite integral domain and let $a \in R$ be non-zero. Consider the function $f: R \rightarrow R$ defined by

$$
f(x)=a x
$$

By the cancellation laws,

$$
f(x)=f(y) \Longrightarrow a x=a y \Longrightarrow x=y
$$

whence f is injective. Since R is finite, it follows that f is bijective. But then $\exists b \in R$ such that $f(b)=1$. Otherwise said, $a b=1$ and so a is a unit. Since all non-zero elements are units, we have a field.

Note where we needed the finiteness of R in order to drive the proof. The obvious counter-example of $R=\mathbb{Z}$ shows that an infinite integral domain need not be a field. Indeed, in such a case, the function $f: \mathbb{Z} \rightarrow \mathbb{Z}: x \mapsto a x$ is injective, but is only surjective when $a= \pm 1$ is a unit.

Corollary 19.6. \mathbb{Z}_{n} is an integral domain if and only if n is prime. Indeed $a \in \mathbb{Z}_{n}$ is a zero-divisor if and only if $\operatorname{gcd}(a, n) \neq 1$.

Factorizing polynomials

One of the upshots of this discussion is that one can factorize polynomials normally, even when working in \mathbb{Z}_{n}, but only if n is prime! We shall return to a formal discussion of polynomial rings later. For now, consider an example where $F=\mathbb{Z}_{7}$.

Given $3 x^{3}-3 x^{2}+x-1=0 \in \mathbb{Z}_{7}$, we start by trying solutions. Quickly we see that $x=1$ works. Factorizing by $x-1$ we obtain

$$
3 x^{3}-3 x^{2}+x-1=(x-1)\left(3 x^{2}+1\right)
$$

[^6]Keeping going: $x=3$ solves $3 x^{2}+1=0$, whence

$$
3 x^{3}-3 x^{2}+x-1=(x-1)(x-3)(3 x+9)=3(x-1)(x-3)(x+3)
$$

We've obtained a complete factorization. Even though we found this by guessing solutions, the fact thar \mathbb{Z}_{7} is an integral domain means that the only solutions arise from one of these factors being zero: the solutions are precisely $x=1,3,4 \in \mathbb{Z}_{7}$.
Of course, we could simply have tried every element of \mathbb{Z}_{7}, so the method isn't very efficient when the ring is small.

What about solving equations in \mathbb{Z}_{n} when n is composite? If $n=p_{1}^{\mu_{1}} \cdots p_{k}^{\mu_{k}}$ is the unique prime decomposition, then

$$
f(x) \equiv 0 \quad \bmod n \Longleftrightarrow \forall i, f(x) \equiv 0 \quad \bmod p_{i}^{\mu_{i}} \Longrightarrow \forall i, f(x) \equiv 0 \quad \bmod p_{i}
$$

We can therefore start by breaking things up into individual primes. For example, to solve

$$
x^{3}+x^{2}-2=0 \in \mathbb{Z}_{18}
$$

we first solve in \mathbb{Z}_{2} and \mathbb{Z}_{3}. Thus

$$
x^{3}+x^{2}=x^{2}(x+1)=0 \Longrightarrow x=0,1 \in \mathbb{Z}_{2}
$$

and

$$
x^{3}+x^{2}-2=(x-1)\left(x^{2}+2 x+2\right)=0 \Longrightarrow x=1 \in \mathbb{Z}_{3}
$$

Now extend to \mathbb{Z}_{9} : by the previous calculation we try $x=1,4$ and 7 , of which only $x=1$ works. It follows that $x=0,1 \in \mathbb{Z}_{2}$ and $x=1 \in \mathbb{Z}_{9}$. Together these yield the solutions $x=1,10 \in \mathbb{Z}_{18}$.

Characteristics

Definition 19.7. Let R be a ring. Its characteristic $\operatorname{char}(R)$ is the smallest positive integer n such that

$$
\forall a \in R, n \cdot a=\underbrace{a+\cdots+a}_{n \text { times }}=0
$$

If no such n exists, we say the ring has characteristic zero.

Examples

1. It should be clear that $\operatorname{char}\left(\mathbb{Z}_{n}\right)=n$. Certainly

$$
\forall a, n \cdot a=n a=0 \in \mathbb{Z}_{n}
$$

Moreover, n is the least such number, since $k \cdot 1=0 \Longleftrightarrow n \mid k$.
2. In the infinite rings $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ we have $k \cdot 1=k$ which is never zero, whence these rings have characteristic zero.

The focus on what happens to 1 really is the whole story (at least in rings with unity!).
Theorem 19.8. Suppose that R is a ring with unity. If $n \in \mathbb{N}$ is the least number such that $n \cdot 1=0$, then n is the characteristic of R. Otherwise said, $\operatorname{char}(R)$ is the order of the cyclic subgroup $\langle 1\rangle \leq(R,+)$ generated by 1.

Proof. Observe that

$$
n \cdot a=a+\cdots+a=a(1+\cdots+1)=a(n \cdot 1)
$$

Thus $n \cdot 1=0 \Longleftrightarrow n \cdot a=0$ for all $a \in R$.

Further Examples of Characteristics

1. The characteristic of $\mathbb{Z}_{15} \times \mathbb{Z}_{20}$ is the order of $(1,1)$: this is $\operatorname{lcm}(15,20)=60$.
2. If R is a commutative ring with characteristic 3 , then

$$
(a+b)^{3}=a^{3}+3 \cdot a^{2} b+3 \cdot a b^{2}+b^{3}=a^{3}+b^{3}
$$

3. Let R be a ring and $M(R)$ be the set of 3×3 matrices with entries in R and whose first column is zero. This is a non-unital ring, even if R has a unity. Its characteristic is the same as that of R.

20 Fermat's and Euler's Theorems

Recall Theorem 18.7. If R is a ring with unity, then the set of units in R forms a group under multiplication. Applying this to \mathbb{Z}_{n} recovers a famous discussion.

Definition 20.1. Let $\varphi(n)=\left|\mathbb{Z}_{n}^{\times}\right|$denote the order of the group of units in \mathbb{Z}_{n}. The function $\varphi: \mathbb{N} \rightarrow$ \mathbb{N} is caller Euler's totient function.

Theorem 20.2 (Euler's Theorem). If $a \in \mathbb{Z}_{n}^{\times}$is a unit, then $a^{\varphi(n)} \equiv 1 \bmod n$.
Proof. By Lagrange's Theorem, the order k of an element a divides the order of the group $\varphi(n)$. Thus $k=\frac{\varphi(n)}{d}$ for some d. But then

$$
a^{\varphi(n)} \equiv\left(a^{k}\right)^{d} \equiv 1^{d} \equiv 1 \quad \bmod n
$$

This result is known as Fermat's Little Theorem if n is prime (then \mathbb{Z}_{p}^{\times}has order $\varphi(p)=p-1$). The theorems of Fermat and Euler, and the function φ, have many applications, particularly in Number Theory. Here are a few highlights.

Theorem 20.3 (Computing φ). 1. If p is prime, then $\varphi\left(p^{k}\right)=p^{k-1}(p-1)=p^{k}\left(1-\frac{1}{p}\right)$.
2. Euler's function is multiplicative: that is,

$$
\operatorname{gcd}(m, n)=1 \Longrightarrow \varphi(m n)=\varphi(m) \varphi(n)
$$

3. For any positive integer $n \geq 2$,

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Sketch Proof. 1. An element of $\mathbb{Z}_{p^{k}}$ is relatively prime to p^{k} if and only if it is not divisible by p. The remainders divisible by p all have the form
$s p$ where $s \in\left\{0,1,2, \ldots, p^{k-1}-1\right\}$
In particular, there are p^{k-1} remainders divisible by p, and so $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$ remainders which are not.
2. Take a course in number theory if you want to see a full argument for this! Here is an easy special case. Suppose $p \neq q$ are distinct primes. If $x \in \mathbb{Z}_{p q}$ is non-zero, then $\operatorname{gcd}(x, p q)=1, p$ or q. It should be clear that

$$
\begin{aligned}
& \operatorname{gcd}(x, p q)=p \Longleftrightarrow x=s p \quad \text { where } \quad s \in\{1,2, \ldots, q-1\} \quad \text { and, } \\
& \operatorname{gcd}(x, p q)=q \Longleftrightarrow x=t q \quad \text { where } \quad t \in\{1,2, \ldots, p-1\}
\end{aligned}
$$

and that there is no overlap between these lists. Since $0 \in \mathbb{Z}_{p q}$ is not a unit, it follows that the number of non-units in $\mathbb{Z}_{p q}$ is

$$
\varphi(p q)=p q-p-q+1=(p-1)(q-1)
$$

3. This follows immediately from 1 and 2 : given the unique prime factorization

$$
n=p_{1}^{\mu_{1}} \cdots p_{k}^{\mu_{k}} \Longrightarrow \varphi(n)=\prod_{i=1}^{k} \varphi\left(p_{i}^{\mu_{i}}\right)=\prod_{i=1}^{k} p_{i}^{\mu_{i}}\left(1-\frac{1}{p_{i}}\right)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Example: computing large powers To compute $197^{2018} \in \mathbb{Z}_{200}$, note first that $\varphi(200)=200 \cdot \frac{1}{2} \cdot \frac{4}{5}=$ 80 and that $\operatorname{gcd}(197,200)=1$, so that 197 is a unit. But then Euler's Theorem tells us that

$$
197^{2018}=197^{80 \cdot 25+18}=\left(197^{80}\right)^{25} \cdot 197^{18}=3^{18}
$$

A little computation shows that $3^{3}=27,3^{6}=129,3^{12}=41,3^{18}=89$ whence $197^{2018}=89 \in \mathbb{Z}_{200}$.
Example: solving congruences To solve a congruence such as $x^{7} \equiv 5 \bmod 33$ we could laboriously check for every value of $x \in \mathbb{Z}_{33}$. Instead, suppose a solution x exists and let $d=\operatorname{gcd}(x, 33)$. Then $d \mid x^{7}$, and so $d \mid 5$. But this means that d is a common divisor of 5 and 33: d must be 1! It follows that any possible solution is a unit.
To apply Euler's Theorem requires a little trick: we want to raise both sides of the original equation to a power u such that $7 u \equiv 1 \bmod \varphi(33)$. That is,

$$
7 u \equiv 1 \bmod 20 \Longrightarrow 21 u \equiv 3 \bmod 20 \Longrightarrow u \equiv 3 \bmod 20
$$

Now apply Euler's Theorem:

$$
x^{7} \equiv 5 \Longrightarrow x^{21} \equiv 5^{3} \Longrightarrow x \equiv 5^{3} \equiv 25 \cdot 5 \equiv-8 \cdot 5 \equiv 26 \bmod 33
$$

The structure of the group of units: non-examinable/open-book

The group of units in the ring \mathbb{Z}_{n} is somewhat complicated: in general it can be quite difficult to identify the group structure. We do have the following result, which we state without proof.

Theorem 20.4. \mathbb{Z}_{n}^{\times}is cyclic if and only if $n=2,4, p^{k}$ or $2 p^{k}$ where p is an odd prime.
Definition 20.5. If \mathbb{Z}_{n}^{\times}is cyclic, any generator is termed a primitive root modulo n.
Corollary 20.6. If g is a primitive root modulo n, then g^{s} is a primitive root if and only if $\operatorname{gcd}(\varphi(n), s)=1$. In particular, there are $\varphi(\varphi(n))$ primitive roots.

Proof. This is immediate from our knowledge of subgroups of cyclic groups. If g is a primitive root modulo n, then $\mathbb{Z}_{n}^{\times}=\langle g\rangle$. The cyclic subgroup $\left\langle g^{s}\right\rangle$ has order $\frac{\varphi(n)}{\operatorname{gcd}(\varphi(n), s)}$.

Examples

1. $n=14$ has a primitive root, namely $g=3$. We check

$$
\langle 3\rangle=\{3,9,13,11,5,1\}=\mathbb{Z}_{14}^{\times}
$$

There are $\varphi(\varphi(14))=\varphi(6)=2$ primitive roots, the other being 5 . The group of units is isomorphic to \mathbb{Z}_{6}.
2. $\mathbb{Z}_{8}^{\times}=\{1,3,5,7\}$ is not cyclic. Since every element is its own inverse, we conclude that $\mathbb{Z}_{8}^{\times} \cong$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is isomorphic to the Klein 4-group.

Finally, recall Corollary 18.10 , if $\operatorname{gcd}(m, n)=1$, then $\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is a ring isomorphism and so units correspond. Moreover $(x, y) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is a unit if and only if $x \in \mathbb{Z}_{m}^{\times}$and $y \in \mathbb{Z}_{n}^{\times}$(its inverse is $(x, y)^{-1}=\left(x^{-1}, y^{-1}\right)$. We can easily generalize:

Corollary 20.7. If $n=p_{1}^{\mu_{1}} \times \cdots \times p_{k}^{\mu_{k}}$ is the unique prime factorization of n, then

$$
\mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1}^{\mu_{1}}} \times \cdots \times \mathbb{Z}_{p_{k}^{p_{k}}}
$$

is a ring isomorphism and

$$
\mathbb{Z}_{n}^{\times} \cong \mathbb{Z}_{p_{1}^{u_{1}}}^{\times} \times \cdots \times \mathbb{Z}_{p_{k}^{u_{k}}}^{\times}
$$

is a group isomorphism.

Example \mathbb{Z}_{65}^{\times}has order $\varphi(65)=65 \cdot \frac{4}{5} \cdot \frac{12}{13}=48$. By the Corollary,

$$
\mathbb{Z}_{65}^{\times}=\mathbb{Z}_{5 \cdot 13}^{\times} \cong \mathbb{Z}_{5}^{\times} \times \mathbb{Z}_{13}^{\times} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{12}
$$

since both 5 and 13 are prime.

21 The Field of Quotients of an Integral Domain

A field is the closest one can get to having a set $(F,+, \cdot)$ which is an abelian group with respect to two distinct distributing operations: we always have to exclude at least 0 from the multiplicative group structure. Fields, and the ability to divide, are so useful that it is helpful to be able to embed any integral domain in a field. Essentially we wish to do the following:

Given an integral domain D, find the smallest field F such that D is isomorphic to a subdomain of F.
Here is the approach whereby we construct \mathbb{Q} from \mathbb{Z}. This is lengthy, but worth the read!

1. Define a relation \sim on $S:=\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$ by

$$
(a, b) \sim(c, d) \Longleftrightarrow a d=b c
$$

2. Prove that \sim is an equivalence relation on S :

Reflexivity $\forall(a, b) \in S, a b=b a \Longrightarrow(a, b) \sim(a, b)$.
Symmetry $\forall(a, b),(c, d) \in S$,

$$
(a, b) \sim(c, d) \Longrightarrow a d=b c \Longrightarrow c b=d a \Longrightarrow(c, d) \sim(a, b)
$$

Transitivity $\forall(a, b),(c, d),(e, f) \in S$,

$$
\begin{aligned}
(a, b) \sim(c, d) \text { and }(c, d) \sim(e, f) & \Longrightarrow a d=b c \text { and } c f=d e \\
& \Longrightarrow a d c f=b c d e \Longrightarrow c d(a f-b e)=0 \\
& \Longrightarrow c(a f-b e) \quad \quad(\text { since } d \in \mathbb{Z} \backslash\{0\}) \\
& \Longrightarrow c=0 \text { or } a f=b e \\
& \Longrightarrow c=0 \text { or }(a, b) \sim(e, f)
\end{aligned}
$$

However, if $c=0$, then $a=0=e$ (since $d \neq 0$), in which case $a f=b e$ and we still have $(a, b) \sim(e, f)$.
3. Define $\mathbb{Q}=S / \sim=\{[(a, b)]:(a, b) \in S\}$ to be the set of equivalence classes of \sim in S. We claim that Q inherits a field structure from \mathbb{Z} in a natural way. Define operations + and \cdot on Q by

$$
[(a, b)]+[(c, d)]:=[(a d+b c, b d)], \quad[(a, b)] \cdot[(c, d)]:=[(a c, b d)]
$$

- These are well-defined operations: if $(a, b) \sim(p, q)$ and $(c, d) \sim(r, s)$, then $a q=b p$ and $c s=d r$. But then

$$
[(p, q)]+[(r, s)]=[(p s+q r, q s)]
$$

However,

$$
\begin{gathered}
(a d+b c) q s-b d(p s+q r)=(a q-b p) d s+(c s-d r) b q=0 \\
\Longrightarrow[(p, q)]+[(r, s)]=[(a, b)]+[(c, d)]
\end{gathered}
$$

Similarly,

$$
a c q s-b d p r=a q c s-a q c s=0 \Longrightarrow[(p, q)] \cdot[(r, s)]=[(a, b)] \cdot[(c, d)]
$$

It follows that Q is closed under both operations.

- The operations are associative. This is tedious: it suffices to observe that

$$
\begin{aligned}
& {[(a, b)]+[(c, d)]+[(e, f)]=[(a d f+b c f+b d e, b d f)] \quad \text { and, }} \\
& {[(a, b)] \cdot[(c, d)] \cdot[(e, f)]=[(a c e, b d f)]}
\end{aligned}
$$

regardless of which operation one computes first.

- The operations are commutative: this is immediate by inspection.
- Both operations have identities:

$$
0_{\mathrm{Q}}=[(0,1)], \quad 1_{\mathrm{Q}}=[(1,1)]
$$

- Both operations have inverses:

$$
-[(a, b)]=[(-a, b)], \quad[(c, d)]^{-1}=[(d, c)] \quad\left(\text { provided }[(c, d)] \neq 0_{\mathbb{Q}}\right)
$$

- The distributive laws hold: for instance,

$$
\begin{aligned}
([(a, b)]+[(c, d)]) \cdot[(e, f)] & =[(a d+b c, b d)] \cdot[(e, f)] \\
& =[(a d e+b c e, b d f)]=\left[\left(\text { adef }+ \text { bcef }, b d f^{2}\right)\right] \\
& =[(a e, b f)]+[(c e, d f)] \\
& =[(a, b) \cdot[(e, f)]+[(c, d)] \cdot[(e, f)]
\end{aligned}
$$

The other is similar.
The upshot is that we've defined a field $(\mathbf{Q},+, \cdot)$. Of course it is customary to write $\frac{a}{b}=[(a, b)]$ so that the addition and multiplication operations become the familiar expressions

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \quad \text { and } \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

but we keep the old notation just a while longer...
4. Observe that the subring $\widehat{\mathbb{Z}}:=\{[(a, 1)]: a \in \mathbb{Z}\}$ is isomorphic to \mathbb{Z}. For this, define the function

$$
\mu: \mathbb{Z} \rightarrow \widehat{\mathbb{Z}}: a \mapsto[(a, 1)]
$$

and check that μ is an isomorphism of rings.
Bijectivity μ is certainly surjective by definition. Moreover,

$$
\mu(a)=\mu(b) \Longrightarrow(a, 1) \sim(b, 1) \Longrightarrow a \cdot 1=1 \cdot b \Longrightarrow a=b
$$

whence μ is injective.
Homomorphism It is easy to check that

$$
\begin{aligned}
& \mu(a+b)=[(a+b, 1)]=[(a, 1)]+[(b, 1)]=\mu(a)+\mu(b) \\
& \mu(a b)=[(a b, 1)]=[(a, 1)] \cdot[(b, 1)]=\mu(a) \cdot \mu(b)
\end{aligned}
$$

The result is that we've defined a field \mathbb{Q} containing an isomorphic copy of the integral domain \mathbb{Z}.

Generalizing So far, so exciting: we've laboriously defined and checked the consistency of an object Q with which we've been working for years. The next observation is crucial: check every step of the argument:

To construct \mathbb{Q}, all we required was that \mathbb{Z} be an integral domain!
The lack of zero-divisors is required to prove the transitivity of \sim while the fact that \mathbb{Z} is a commutative ring is needed repeatedly ${ }^{11}$ The upshot is that we can repeat the construction for any integral domain.

Definition 21.1. Let D be an integral domain. Define the equivalence relation \sim on $S=D \times(D \backslash\{0\})$ by

$$
(a, b) \sim(c, d) \Longleftrightarrow a d=b c
$$

The field of quotients $\operatorname{Frac}(D)$ of D is the field S / \sim with operations

$$
[(a, b)]+[(c, d)]:=[(a d+b c, b d)], \quad[(a, b)] \cdot[(c, d)]:=[(a c, b d)]
$$

The notation is unwieldy, but before we can make everything simpler we need to prove perform one piece of housekeeping.

Theorem 21.2. 1. Everything in the definition is as claimed: ~ is an equivalence relation, the operations are well-defined and $\operatorname{Frac}(D)$ really is a field.
2. The subring

$$
R=\{[(a, 1)]: a \in D\}
$$

is ring-isomorphic to D.
3. If L is any field containing D as a subring, then there exists a function $\psi: \operatorname{Frac}(D) \rightarrow L$ such that
(a) ψ is an isomorphism of $\operatorname{Frac}(D)$ onto a subfield of L,
(b) $\forall a \in D, \psi([(a, 1)])=a$.

Remarks and Notation

- We've proved parts 1 and 2 in the above discussion: simply replace \mathbb{Z} with D, \mathbb{Q} with $\operatorname{Frac}(D)$ and $\widehat{\mathbb{Z}}$ with R.
- Atfer completing the proof, we will typically write $a b^{-1}$ for the element $[(a, b)] \in \operatorname{Frac}(D)$. Under this identification, we see that $a=[(a, 1)]$ for every $a \in D$, whence parts 2 . and 3 . become $R=D$ and $\psi(a)=a$.

[^7]where b is any non-zero integer. The construction is therefore valid in any commutative ring with no zero-divisors.

Proof of 3. Wtart by defining ψ. Since $D \leq L$, we see that every non-zero element of D is invertible in the field L. It follows that we can define

$$
\psi([(a, b)])=a b^{-1}
$$

where $a b^{-1}$ is computed in L. Now observe that

$$
\begin{aligned}
{[(a, b)]=[(c, d)] } & \Longleftrightarrow(a, b) \sim(c, d) \Longleftrightarrow a d=b c \\
& \Longleftrightarrow a b^{-1}=b^{-1} a=c d^{-1} \\
& \Longleftrightarrow \psi([(a, b)])=\psi([(c, d)])
\end{aligned}
$$

whence ψ is well-defined and injective. We also clearly have $\psi([(a, 1)])=a \in L$. Moreover,

$$
\psi\left([(a, b)]+\psi([(c, d)])=a b^{-1}+c d^{-1}=(a d+b c)(b d)^{-1}=\psi([(a, b)]+[(c, d)])\right.
$$

and

$$
\psi\left([(a, b)] \cdot \psi([(c, d)])=a b^{-1} c d^{-1}=(a c)(b d)^{-1}=\psi([(a, b)] \cdot[(c, d)])\right.
$$

whence ψ is an isomorphism onto its image.
The third part of the theorem is hugely important: it says that $\operatorname{Frac}(D)$ is the smallest field containing D in the sense that every field containing D must contain an isomorphic copy of $\operatorname{Frac}(D)$.

Examples

1. Suppose that D is already a field (this is automatic if D is a finite integral domain). Revisit the construction:

$$
(a, b) \sim(c, d) \Longleftrightarrow a d=b c \Longleftrightarrow a b^{-1}=c d^{-1} \text { in } D!
$$

It follows that the field of quotients is (isomorphic to) D itself.
2. Consider the integral domain $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$. Its field of quotients consists of all elements

$$
\frac{a+b \sqrt{2}}{c+d \sqrt{2}}=\frac{(a+b \sqrt{2})(c-d \sqrt{2})}{c^{2}-2 d^{2}}=\frac{(a c-2 b d)+(b c-a d) \sqrt{2}}{c^{2}-2 d^{2}}
$$

so that we obtain the field ${ }^{12}$

$$
\mathbb{Q}(\sqrt{2}):=\{p+q \sqrt{2}: p, q \in \mathbb{Q}\}
$$

[^8]
[^0]: ${ }^{1}$ You should be comfortable with both multiplicative and additive notation.
 ${ }^{2}$ More generally any substructure.

[^1]: ${ }^{3}$ We only need one side of the identity axiom: $x+0=x$ is superfluous since + is commutative.

[^2]: ${ }^{4}$ The definite article is appropriate here. The proof that the identity is unique in a group only requires closure, thus a ring with unity has only one unity! Explicitly, if 1 and $\hat{1}$ are unities, then $1 \cdot \hat{1}$ must both be 1 and $\hat{1} . .$.

[^3]: ${ }^{5}$ In number theory, the generator 3 is called a primitive root modulo 10 . Not all n have primitive roots: indeed the group of units is rarely cyclic.
 ${ }^{6}$ See the comment on non-unital rings on the previous page.
 ${ }^{7}$ Recall that $\phi(x)=k x$ defines a group homomorphism $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ for any $k \in \mathbb{Z}$.

[^4]: ${ }^{8}$ It also follows from the previous result. If $\phi: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is a homomorphism, then $\phi(x)=x \cdot \phi(1)$. Letting $\phi(1)=(a, b)$, we see that $\phi(x)=(a x, b x)$. However
 $(0,0)=\phi(x)=(a x, b x) \Longleftrightarrow\left\{\begin{array}{l}a x \equiv 0 \bmod m \\ b x \equiv 0 \bmod n\end{array}\right.$
 ϕ is surjective only if $x=m n$ is the smallest positive integer satisfying the above. But this is if and only if $\operatorname{gcd}(a, m)=1=$ $\operatorname{gcd}(b, n)=\operatorname{gcd}(m, n)$.

[^5]: ${ }^{9}$ Recall that $p \in \mathbb{N}_{\geq 2}$ is prime if $p|a b \Longrightarrow p| a$ or $p \mid b$.

[^6]: ${ }^{10} R$ need not be an integral domain, it could be non-commutative and might have no unity.

[^7]: ${ }^{11}$ It might appear that the existence of the unity $1 \in \mathbb{Z}$ is required to define $0_{Q}, 1_{Q}$ and to identify $\widehat{\mathbb{Z}} \leq \mathbb{Q}$, but these can be done via

 $$
 0_{\mathbb{Q}}:=[(0, b)], \quad 1_{\mathbb{Q}}:=[(b, b)], \quad \widehat{\mathbb{Z}}=\{[(a b, b): a \in \mathbb{Z}\}
 $$

[^8]: ${ }^{12}$ One can easily obtain any element of $Q(\sqrt{2})$ by setting $d=0$ and taking c to be the least common multiple of the denominators of p, q.

