Sketch Notes — Rings and Fields

Neil Donaldson

Fall 2018

Text

• An Introduction to Abstract Algebra, John Fraleigh, 7th Ed 2003, Adison–Wesley (optional).

Brief reminder of groups

You should be familiar with the majority of what follows though there is a lot of time to remind yourself of the harder material! Try to complete the proofs of any results yourself.

Definition. A *binary structure* (G, \cdot) is a set *G* together with a function $\cdot : G \times G \to G$. We say that *G* is *closed* under \cdot and typically write \cdot as juxtaposition.¹

A *semigroup* is an *associative* binary structure:

 $\forall x, y, z \in G, x(yz) = (xy)z$

A *monoid* is a semigroup with an *identity element*:

 $\exists e \in G \text{ such that } \forall x \in G, ex = xe = x$

A group is a monoid in which every element has an *inverse*:

 $\forall x \in G, \exists x^{-1} \in G \text{ such that } xx^{-1} = x^{-1}x = e$

A binary structure is *commutative* if $\forall x, y \in G$, xy = yx. A group with a commutative structure is termed *abelian*.

A subgroup² is a non-empty subset $H \subseteq G$ which remains a group *under the same binary operation*. We write $H \leq G$.

Lemma. *H* is a subgroup of *G* if and only if it is a non-empty subset of *G* closed under multiplication and inverses in *G*.

Standard examples of groups: sets of numbers under addition (\mathbb{Z} , \mathbb{Q} , \mathbb{R} , $n\mathbb{Z}$, etc.), matrix groups.

Standard families: cyclic, symmetric, alternating, dihedral.

¹You should be comfortable with both multiplicative and additive notation.

²More generally any substructure.

Cosets and Factor Groups

Definition. If $H \leq G$ and $g \in G$, then the *left coset of H containing G* is the set

 $gH = \{gh : h \in H\}$

Clearly $k \in gH \iff \exists h \in H$ such that $k = gh \iff k^{-1}g \in H$.

The right coset Hg is defined similarly.

A subgroup *H* of *G* is *normal* (written $H \triangleleft G$) if gH = Hg for all $g \in G$.

Lemma. $H \triangleleft G \iff \forall g \in G, h \in H$ we have $ghg^{-1} \in H$

Theorem. The set of (left) cosets of $H \triangleleft G$ has a natural group structure defined by $g_1H \cdot g_2H := (g_1g_2)H$. We call this the factor group $G/_H$.

Definition. For each $n \in \mathbb{N}$, we define $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.

Homomorphisms

Definition. A function ϕ : $(G, \cdot) \rightarrow (H, \star)$ of binary structures is a *homomorphism* if

 $\forall x, y \in G, \quad \phi(x \cdot y) = \phi(x) \star \phi(y)$

An *isomorphism* is a bijective homomorphism: we write $G \cong H$ if there exists an isomorphism from *G* to *H*.

If ϕ is a homomorphism of groups, then its *kernel* and *image* are the sets

$$\ker \phi = \{g \in G : \phi(g) = e\} \qquad \operatorname{Im} \phi = \{\phi(g) : g \in G\}$$

Lemma. ker $\phi \triangleleft G$.

Theorem (1st isomorphism theorem). 1. If $\phi : G \to H$ is a homomorphism, then $G/\ker \phi \cong \operatorname{Im} \phi$ via the isomorphism

 $the\ isomorphism$

 $\mu(gH) := \phi(g)$

2. If $H \triangleleft G$ then $\gamma : G \rightarrow G/_{H}$ defined by $\gamma(g) = gH$ is a homomorphism, whence every factor group appears as in part 1.

Example Let $\zeta = e^{\frac{2\pi i}{9}}$ and define

$$\phi:\mathbb{Z}\to\mathbb{C}:x\mapsto\zeta^x$$

This is a homomorphism with kernel ker $\phi = 9\mathbb{Z}$: the 1st isomorphism theorem reads

$$\mathbb{Z}/_{9\mathbb{Z}}\cong\operatorname{Im}\phi=\{1,\zeta,\zeta^2,\ldots,\zeta^8\}$$

which is the multiplicative group of 9th roots of unity.

18 **Rings and Fields**

Definition 18.1. A *ring* is a set *R* with two binary operations + and \cdot (always called addition and multiplication) for which:

- 1. (R, +) is an abelian group.
- 2. (R, \cdot) is a semigroup (*R* is closed under \cdot and \cdot is associative).
- 3. The *left* and *right distributive laws hold*:

 $\forall x, y, z \in R, x \cdot (y+z) = x \cdot y + x \cdot z \text{ and } (x+y) \cdot z = x \cdot z + y \cdot z$

A ring is simply an abelian group (axiom 1) with a bit of extra structure that making it behave similarly to the integers: we have a notion of multiplication (axiom 2) which interacts with addition (axiom 3) in the expected way. Rings often *feel* easier than groups because they behave so similarly to the familiar integers.

Definition 18.2. A ring $(R, +, \cdot)$ is *commutative* if \cdot is commutative.

Simple Examples

- Sets of numbers: Z, *n*Z, Q, R, C with the usual addition and multiplication. These are all commutative rings.
- The set of polynomials R[x] whose coefficients lie in some ring R. The addition and multiplication are inherited from that of R. For instance, if $R = \mathbb{Z}$, then

$$(1+3x^2)(2x-4x^2) = 2x - 4x^2 + 6x^3 - 12x^4$$

R[x] will be commutative precisely when R is commutative. More generally, the set of functions $f : R \to R$ also forms a ring using the addition and multiplication of elements in R.

- The set $M_n(R)$ of $n \times n$ matrices whose entries lie in a ring R. Typically $M_n(R)$ is a noncommutative ring, regardless of whether R is commutative.
- The *quaternions* are the set

$$Q = \{w + ix + jy + kz : w, x, y, z \in \mathbb{R}, i^2 = j^2 = k^2 = -1, ij = k \text{ etc.}\}$$

Think of this like a copy of \mathbb{R}^4 with basis $\{1, i, j, k\}$. Addition is the usual addition in \mathbb{R}^4 . Multiplication works as with the complex numbers: i, j and k act like three different copies of the imaginary unit i. Finally, distinct elements i, j, k multiply following the right-hand rule for cross-products:

$$ij = k = -ji$$
, $jk = i = -kj$, $ki = j = -ik$

It is a little work to check that (Q, \cdot) is associative. Since, e.g., ij = -ji, we have a non-commutative ring.

• The *factor rings* $\mathbb{Z}_n = \frac{\mathbb{Z}}{n\mathbb{Z}}$ are defined in the same manner as for groups: we will do this more formally later. It is perfectly acceptable to write

 $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$

as long as you appreciate that the symbol x refers to the equivalence class of integers

 $[x] = \{x + \lambda n : \lambda \in \mathbb{Z}\}$

A *direct product* of rings R₁ × · · · × R_k is defined exactly as for groups. For example, in the ring Z × M₂(ℝ) we could write

$$\begin{pmatrix} 2, \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} -3, \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} -6, \begin{pmatrix} 2 & -3 \\ 3 & -4 \end{pmatrix} \end{pmatrix}$$

Non-examples of rings

- The natural numbers N do not form an abelian group under addition.
- $M_{m \times n}(R)$ (if $n \neq m$): multiplication is not well-defined.
- General vector spaces are not rings: there is no natural sense of product! You might suspect that (ℝ³, +, ×) is a ring, where × is the cross-product. However, observe that

$$\mathbf{i} \times (\mathbf{i} \times \mathbf{j}) = \mathbf{i} \times \mathbf{k} = -\mathbf{j} \neq \mathbf{0} = (\mathbf{i} \times \mathbf{i}) \times \mathbf{j}$$

The product is not associative! Non-associative algebras are extremely important (Lie Algebras rule parts geometry and of Physics) but they are *not* rings.

Conventions

We've already started following some of these as the conventions are similar to those you are used to following from group theory.

- We will usually just say 'the ring R_i ' rather than $(R_i + , \cdot)$, unless the operations are not clear.
- You should assume that *R* is a ring unless otherwise stated: e.g. \mathbb{Z} , \mathbb{Z}_n , etc., are always *rings* in this course. If we need to refer to the *additive group of a ring*, we will write (R, +).
- Since (R, +) is an abelian group, it is typical to denote the *additive identity* by 0. Thus,³

 $\forall x \in R, 0 + x = x$

We similarly denote additive inverses using negatives:

 $\forall x \in R, \ x + (-x) = 0$

³We only need one side of the identity axiom: x + 0 = x is superfluous since + is commutative.

• Use juxtaposition and exponentiation notation for multiplication unless in the dot is helpful: thus

 $x \cdot x \cdot x = xxx = x^3$

• If *n* is a positive integer and $x \in R$, we will write

$$n \cdot x = \underbrace{x + \dots + x}_{n \text{ times}}$$

This requires a little care: if *R* is any ring and $x \in R$, we can always write, for instance

 $3 \cdot x = x + x + x$

In the special case where $3 \in R$ (say if $R = \mathbb{Z}$), then $3 \cdot x = 3x$ since we really can multiply 3 by x within R. In general, however, this makes no sense: for example 3x is meaningless within the ring $2\mathbb{Z}$ of even integers, since $3 \notin 2\mathbb{Z}$.

Basic Results The basic theorems regarding groups necessarily hold: we state these without proof.

Lemma 18.3. If $(R, +, \cdot)$ is a ring, then the additive identity 0 and additive inverses are unique. Moreover, the left- and right-cancellation laws hold:

 $x + y = x + z \implies y = z$, and $x + z = y + z \implies x = y$

The first genuine results concerning rings involve the interaction of the additive identity with multiplication: essentially this first theorem tells us that 0 and negative signs behave exactly as we expect.

Theorem 18.4 (Laws of Signs). Let R be a ring:

1.
$$\forall x \in R, \ 0x = x0 = 0$$

- 2. $\forall x, y \in R, x(-y) = (-x)y = -xy$
- 3. $\forall x, y \in R$, (-x)(-y) = xy
- *Proof.* 1. Since (R, +) is an additive group, we have 0 = 0 + 0. Multiplying on the right by *x* and applying a distributive law yields

$$0x = (0+0)x = 0x + 0x$$

Cancelling 0x from both sides (Lemma 18.3) gives half the result; the remainder follows symmetrically.

2. Apply the distributive law to compute

 $(xy) + (-x)y = (x + (-x))y = 0 \implies -(xy) = (-x)y$

The other version of this is similar.

3. Finally, we apply the first and second results repeatedly:

(-x)(-y) = -(x(-y)) = -(-(xy)) = xy

Further multiplicative structure

Most commonly, we will consider rings where multiplication has more than simple associativity.

Definition 18.5. A ring *R* is a *ring with* 1, or a *ring with unity*, if (R, \cdot) is a *monoid* (an associative binary structure with an identity). In such a case the⁴ *unity*, or *multiplicative identity*, is abstractly denoted 1.

If *R* is a ring with unity $1 \neq 0$, then an element $x \in R$ is a *unit* if it has a multiplicative inverse:

x a unit $\iff \exists x^{-1} \in R$ such that $xx^{-1} = x^{-1}x = 1$

A ring with unity $1 \neq 0$ is a *division ring* or *skew field* is a ring with unity in which every non-zero element is a unit.

A *field* is a commutative division ring.

To a great many authors 'ring' means 'ring with unity $1 \neq 0$:' this assumption is made so often that it is easy to miss and guarantees that the ring has at least two elements. It is common to refer to a ring *without* unity as a *rng* (no i!), a *pseudo-ring* or a *non-unital ring* if clarity is required. For our purposes, a ring may or may not have a unity: when it does, we will make the standard assumption that $1 \neq 0$.

Examples

- \mathbb{Z} is a commutative ring with unity. The only units are ± 1 .
- $n\mathbb{Z}$ has no identity if $n \ge 2$ and thus no units.
- \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.
- If *R* is a ring with unity, then so is *R*[*x*]: the multiplicative identity is the constant polynomial
 1. The set of functions {*f* : *R* → *R*} behaves similarly.
- $M_n(R)$ is a ring with unity if *R* is such: the *identity matrix* is exactly as you expect.
- The quaternions form a *non-commutative division ring*. To see this, note that we can define a *modulus* exactly as with complex numbers:

$$|q|^{2} := q\overline{q} = (w + ix + jy + kz)(w - ix - jy - kz) = w^{2} + x^{2} + y^{2} + z^{2}$$

Clearly $|q| = 0 \iff q = 0$, and $q^{-1} = \frac{\overline{q}}{|q|^2}$.

It is worth recalling some elementary number theory for our next result:

Theorem 18.6. $x \in \mathbb{Z}_n$ is a unit if and only if gcd(x, n) = 1. Thus \mathbb{Z}_n is a field if and only if n is prime.

Proof. Recall Bézout's identity:

 $gcd(x, n) = 1 \iff \exists \lambda, \mu \in \mathbb{Z} \text{ such that } \lambda x + \mu n = 1$

It should be clear that λ is an inverse to x in \mathbb{Z}_n .

⁴The definite article is appropriate here. The proof that the identity is unique in a group only requires closure, thus a ring with unity has *only one* unity! Explicitly, if 1 and 1 are unities, then $1 \cdot 1$ must both be 1 and 1...

Theorem 18.7. *If R is a ring with unity, then the set of units* $U \subseteq R$ *forms a* group under multiplication.

Proof. If $u, v \in U$, quickly check that $v^{-1}u^{-1}$ is an inverse of uv, whence U is closed under multiplication. The associativity, identity and inverse axioms are essentially trivial.

The set of units is often denoted R^{\times} : for example,

$$\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\}$$

Notice that 3 is a generator of this group ($\langle 3 \rangle = \{3, 9, 7, 1\}$) and so $\mathbb{Z}_{10}^{\times} \cong \mathbb{Z}_4$ is cyclic.⁵

Homomorphisms and Isomorphisms

At first glance these work exactly as for groups. The first novelty is that they must preserve *both* binary structures:

Definition 18.8. Let *R*, *S* be rings. A function ϕ : *R* \rightarrow *S* is a homomorphism if

$$\forall x, y \in R, \begin{cases} \phi(x+y) = \phi(x) + \phi(y) \\ \phi(xy) = \phi(x)\phi(y) \end{cases}$$

Additionally, ϕ is an *isomorphism* if it is bijective. We write $R \cong S$ exactly as with isomorphic groups. It should be clear that $\phi : (R, +) \to (S, +)$ is automatically a homo/isomorphism of *groups*.

One delicacy⁶ is that, if *both R*, *S* are rings with unity, then it is common to additionally assume $\phi(1_R) = 1_S$. This is *not guaranteed*! For example,

$$\phi: \mathbb{Z} \to \mathbb{Z}: x \mapsto 0$$

is a homomorphism, although it is extremely boring. Indeed, suppose that $\psi : \mathbb{Z} \to \mathbb{Z}$ is a homomorphism and compute

$$\psi(1) = \psi(1 \cdot 1) = (\psi(1))^2 \implies \psi(1) = 0 \text{ or } 1$$

Since we also require

$$\forall x \in \mathbb{Z}^+, \ \psi(x) = \psi(1 + 1 + \dots + 1) = \psi(1) + \dots + \psi(1) = x \cdot \psi(1)$$

and similarly for negative numbers, it follows that the *only* ring homomorphisms $\psi : \mathbb{Z} \to \mathbb{Z}$ are

$$\psi(x) = 0$$
 or $\psi(x) = x$

This is much more restrictive that with groups.⁷ Some of this discussion is worth generalizing:

Theorem 18.9. Suppose $\phi : R \to S$ is a homomorphism and R is a ring with unity. If $n \in \mathbb{Z}$, then

$$\phi(n) = n \cdot \phi(1)$$

In the general context when R does not contain integers, $n = \underbrace{1 + \cdots + 1}_{n + 1}$.

⁵In number theory, the generator 3 is called a *primitive root* modulo 10. Not all *n* have primitive roots: indeed the group of units is rarely cyclic.

⁶See the comment on non-unital rings on the previous page.

⁷Recall that $\phi(x) = kx$ defines a *group* homomorphism $\phi : \mathbb{Z} \to \mathbb{Z}$ for any $k \in \mathbb{Z}$.

Proof. If n = 0, this is simply the group theoretic result that $\phi(0_R) = 0_S$: recall,

$$\phi(0_R) = \phi(0_R + 0_R) = \phi(0_R) + \phi(0_R) \implies \phi(0_R) = 0_S$$

by cancellation. When $n \ge 1$ this is simple induction on n. Finally, when $n \le -1$ the fact that $\phi(-n) = -\phi(n)$ (basic group theory again) finishes things off.

We are now in a position to extend our discussion of direct products of finite cyclic groups.

Corollary 18.10. $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n \iff \operatorname{gcd}(m, n) = 1$

Proof. Note that the result is already true for *additive groups*,⁸ where we observed that (1,1) is a generator of $\mathbb{Z}_m \times \mathbb{Z}_n$ whenever gcd(m, n) = 1. This corresponds to the function

$$\phi: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n : x \mapsto (x, x)$$

being an *isomorphism*. It remains only to see that ϕ is also an isomorphism of *rings*. But this is trivial:

$$\phi(xy) = (xy, xy) = (x, x) \cdot (y, y) = \phi(x) \cdot \phi(y)$$

Example Find all isomorphisms $\phi : \mathbb{Z}_{12} \to \mathbb{Z}_3 \times \mathbb{Z}_4$.

Let $\phi(1) = (a, b)$: since ϕ is to be a homomorphism of additive groups, we see that

 $\phi(x) = x \cdot \phi(1) = (ax, bx)$

To be an additive isomorphism, we need the order of (a, b) to be 12, whence gcd(a, 3) = 1 = gcd(b, 4). There are *four* group isomorphisms $\phi : \mathbb{Z}_{12} \to \mathbb{Z}_3 \times \mathbb{Z}_4$, corresponding to the generators

$$(a,b) = (1,1), (1,3), (2,1), (2,3)$$

To be a ring homomorphism, we also require

$$\phi(xy) = (axy, bxy) = (a^2xy, b^2xy) = (ax, bx) \cdot (ay, by) = \phi(x) \cdot \phi(y)$$

for *all* x, y. This clearly requires $a^2 \equiv a \mod 3$ and $b^2 \equiv b \mod 4$. Of the above choices, only (a, b) = (1, 1) works. There is therefore exactly *one* ring isomorphism.

The above can be generalized: Suppose that gcd(m, n) = 1 so that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$

• Every group isomorphism $\phi : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ has the form $\phi(x) = (ax, bx)$ where gcd(a, m) = 1 = gcd(b, n), so that $a \in \mathbb{Z}_m^{\times}$ and $b \in \mathbb{Z}_n^{\times}$ are both units.

⁸It also follows from the previous result. If $\phi : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ is a homomorphism, then $\phi(x) = x \cdot \phi(1)$. Letting $\phi(1) = (a, b)$, we see that $\phi(x) = (ax, bx)$. However

$$(0,0) = \phi(x) = (ax, bx) \iff \begin{cases} ax \equiv 0 \mod m \\ bx \equiv 0 \mod n \end{cases}$$

 ϕ is surjective only if x = mn is the *smallest* positive integer satisfying the above. But this is if and only if gcd(a, m) = 1 = gcd(b, n) = gcd(m, n).

• Every ring isomorphism must be a group isomorphism and additionally satisfy

 $a^2 \equiv a \mod m$ and $b^2 \equiv b \mod n$

Since *a*, *b* are already units, it follows that the *only* possibility is to have a = 1 and b = 1. There is *always only one isomorphism*!

Indeed this is a special case of a useful theorem.

Theorem 18.11. *Having a unity is a structural property. Specifically, suppose that* ϕ : $R \rightarrow S$ *is a ring isomorphism (or merely a surjective ring homomorphism) and that* R *is a ring with unity. Then* S *is a ring with unity and* $1_S = \phi(1_R)$.

Proof. For all $x \in R$, we have

 $\phi(x) = \phi(1_R x) = \phi(1_R)\phi(x)$

and similarly $\phi(x) = \phi(x)\phi(1_R)$. Since ϕ is surjective, it follows that $\phi(1_R)y = y = y\phi(1_R)$ for all $y \in S$.

In particular, if ϕ : $R \to S$ is a surjective homomorphism where the *group* (R, +) is cyclic, then $\phi(x) = x \cdot 1_S$. In our previous example, we are forced to take $\phi(1) = (1, 1)$ (the unity in $\mathbb{Z}_m \times \mathbb{Z}_n$), whence $\phi(x) = (x, x)$.

Subrings

Just as with groups, we can define substructures.

Definition. Let $(R, +, \cdot)$ be a ring. A subset *S* is a *subring* of *R* if $(S, +, \cdot)$ is a ring. We have a similar notion for *subfield*.

Since every subring of *R* is necessarily a subgroup of (R, +), we can start hunting for subrings by first considering subgroups.

Examples

1. Subrings of \mathbb{Z} . Every subgroup has the form $n\mathbb{Z}$ for some $n \in \mathbb{N}_0$. Since the set of multiples of n is closed under multiplication, these are also subrings.

In contrast to group theory, note that $\mathbb{Z} \cong n\mathbb{Z}$ when $n \neq 1$. If we had an isomorphism, $\phi : \mathbb{Z} \to n\mathbb{Z}$ then it must also be an isomorphism of groups, whence $\phi(1)$ would have to be a generator: the only options are $\phi(1) = \pm n \implies \phi(x) = \pm nx$. But for this to be a ring isomorphism, we'd need

$$\forall x, y \in \mathbb{Z}, \ \phi(xy) = \phi(x)\phi(y) \implies \pm nxy = nxny$$

a contradiction.

2. A similar game can be played in \mathbb{Z}_n . Every subgroup of $(\mathbb{Z}_n, +)$ has the form $\langle d \rangle = \{kd : k \in \mathbb{Z}\}$ where $d \mid n$. Since (kd)(ld) is still a multiple of d, the subset $\langle d \rangle$ is closed under multiplication and is thus a subring. The subrings of \mathbb{Z}_n are therefore precisely the subgroups of \mathbb{Z}_n .

3. Warning! In general, not all subgroups of (R, +) are going to be *subrings* of R. Take, for example, $\langle (1,2) \rangle \leq \mathbb{Z} \times \mathbb{Z}$ as the cyclic subgroup generated by (1,2). This is not a subring of $\mathbb{Z} \times \mathbb{Z}$ since it is not closed under multiplication:

$$(1,2)\cdot(1,2) = (1,4) \notin \langle (1,2) \rangle$$

19 Integral Domains

The ability to factorize is of crucial importance in mathematics. For instance,

$$x^{2} = x \iff x^{2} - x = 0 \iff x(x - 1) = 0 \iff x = 0, \text{ or } 1$$
(*)

This calculation should feel completely natural, but is it *always* legitimate? Certainly we feel confident if *x* is restricted to the real or complex numbers. What about if $x \in \mathbb{Z}_n$ for some *n*? We can easily find all the solutions to $x^2 \equiv x \mod n$ for all small *n* by inspection: here is what we find.

п	solutions <i>x</i> to $x^2 \equiv x$
2	0,1
3	0,1
4	0,1
5	0,1
6	0, 1, 3, 4
7	0,1
8	0,1
9	0,1
10	0,1,5,6

While the solutions are usually as expected, when n = 6 or 10 we have extras! Indeed the extra solutions correspond to alternative factorizations: for example

$$(x-5)(x-6) \equiv x^2 - 11x + 30 \equiv x^2 - x \mod 10$$

With a little thinking, it should become clear that we will never have this problem of multiple factorizations when *n* is a *prime*:⁹ consider

$$x(x-1) \equiv 0 \mod p \iff p \mid x(x-1) \iff p \mid x \text{ or } p \mid x-1 \iff x \equiv 0, 1 \mod p$$

This is because it is impossible to have non-zero remainders multiplying to give 0. We make a general definition.

Definition 19.1. If $a, b \in R$ are non-zero elements for which ab = 0, we say that a, b are *zero-divisors*.

For example,
$$2 \cdot 5 = 0 \in \mathbb{Z}_{10}$$
, $2 \cdot 3 = 0 \in \mathbb{Z}_6$, $\begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix} = 0 \in M_2(\mathbb{R}).$

Definition 19.2. An *integral domain* is a commutative ring with unity which has no zero-divisors.

The most obvious example of an integral domain is the integers themselves! Clearly $ab = 0 \implies a = 0$ or b = 0. This is true for any of the standard rings of numbers: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} . Indeed:

⁹Recall that $p \in \mathbb{N}_{\geq 2}$ is prime if $p \mid ab \implies p \mid a \text{ or } p \mid b$.

Theorem 19.3. Every field is an integral domain.

Proof. Every field is a commutative ring with unity. Moreover, if *a* is a zero-divisor, then it is a non-zero element and thus a unit. Clearly

 $ab = 0 \implies b = 0$

after multiplying by a^{-1} on the left (this is precisely th argument (†) above. But then a is not a zerodivisor!

With finite domains, things are also very straightforward:

Lemma 19.4 (Cancellation laws). *If R is a ring without zero divisors*¹⁰ *then*

 $\forall a \neq 0, \forall b, c, ab = ac \implies b = c and ba = ca \implies b = c$

Proof. $ab = ac \implies a(b-c) = 0 \implies a = 0 \text{ or } b - c = 0$. Since $a \neq 0$ we conclude that b = c.

Theorem 19.5. *Every finite integral domain is a field.*

Proof. Suppose that *R* is a finite integral domain and let $a \in R$ be *non-zero*. Consider the function $f : R \to R$ defined by

f(x) = ax

By the cancellation laws,

 $f(x) = f(y) \implies ax = ay \implies x = y$

whence *f* is injective. Since *R* is finite, it follows that *f* is *bijective*. But then $\exists b \in R$ such that f(b) = 1. Otherwise said, ab = 1 and so *a* is a unit. Since all non-zero elements are units, we have a field.

Note where we needed the finiteness of *R* in order to drive the proof. The obvious counter-example of $R = \mathbb{Z}$ shows that an infinite integral domain need not be a field. Indeed, in such a case, the function $f : \mathbb{Z} \to \mathbb{Z} : x \mapsto ax$ is injective, but is only *surjective* when $a = \pm 1$ is a unit.

Corollary 19.6. \mathbb{Z}_n is an integral domain if and only if n is prime. Indeed $a \in \mathbb{Z}_n$ is a zero-divisor if and only if $gcd(a, n) \neq 1$.

Factorizing polynomials

One of the upshots of this discussion is that one can factorize polynomials normally, even when working in \mathbb{Z}_n , but *only* if *n* is prime! We shall return to a formal discussion of polynomial rings later. For now, consider an example where $F = \mathbb{Z}_7$.

Given $3x^3 - 3x^2 + x - 1 = 0 \in \mathbb{Z}_7$, we start by trying solutions. Quickly we see that x = 1 works. Factorizing by x - 1 we obtain

 $3x^3 - 3x^2 + x - 1 = (x - 1)(3x^2 + 1)$

¹⁰*R* need not be an integral domain, it could be non-commutative and might have no unity.

Keeping going: x = 3 solves $3x^2 + 1 = 0$, whence

$$3x^3 - 3x^2 + x - 1 = (x - 1)(x - 3)(3x + 9) = 3(x - 1)(x - 3)(x + 3)$$

We've obtained a complete factorization. Even though we found this by guessing solutions, the fact thar \mathbb{Z}_7 is an integral domain means that the only solutions arise from one of these factors being zero: the solutions are precisely $x = 1, 3, 4 \in \mathbb{Z}_7$.

Of course, we could simply have tried every element of \mathbb{Z}_7 , so the method isn't very efficient when the ring is small.

What about solving equations in \mathbb{Z}_n when *n* is composite? If $n = p_1^{\mu_1} \cdots p_k^{\mu_k}$ is the unique prime decomposition, then

 $f(x) \equiv 0 \mod n \iff \forall i, f(x) \equiv 0 \mod p_i^{\mu_i} \implies \forall i, f(x) \equiv 0 \mod p_i$

We can therefore start by breaking things up into individual primes. For example, to solve

 $x^3 + x^2 - 2 = 0 \in \mathbb{Z}_{18}$

we first solve in \mathbb{Z}_2 and \mathbb{Z}_3 . Thus

$$x^{3} + x^{2} = x^{2}(x+1) = 0 \implies x = 0, 1 \in \mathbb{Z}_{2}$$

and

$$x^{3} + x^{2} - 2 = (x - 1)(x^{2} + 2x + 2) = 0 \implies x = 1 \in \mathbb{Z}_{3}$$

Now extend to \mathbb{Z}_9 : by the previous calculation we try x = 1, 4 and 7, of which only x = 1 works. It follows that $x = 0, 1 \in \mathbb{Z}_2$ and $x = 1 \in \mathbb{Z}_9$. Together these yield the solutions $x = 1, 10 \in \mathbb{Z}_{18}$.

Characteristics

Definition 19.7. Let R be a ring. Its *characteristic* char(R) is the smallest positive integer n such that

$$\forall a \in R, \ n \cdot a = \underbrace{a + \dots + a}_{n \text{ times}} = 0$$

If no such *n* exists, we say the ring has characteristic zero.

Examples

1. It should be clear that $char(\mathbb{Z}_n) = n$. Certainly

$$\forall a, n \cdot a = na = 0 \in \mathbb{Z}_n$$

Moreover, *n* is the least such number, since $k \cdot 1 = 0 \iff n \mid k$.

2. In the infinite rings \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} we have $k \cdot 1 = k$ which is never zero, whence these rings have characteristic zero.

The focus on what happens to 1 really is the whole story (at least in rings with unity!).

Theorem 19.8. Suppose that *R* is a ring with unity. If $n \in \mathbb{N}$ is the least number such that $n \cdot 1 = 0$, then *n* is the characteristic of *R*. Otherwise said, char(*R*) is the order of the cyclic subgroup $\langle 1 \rangle \leq (R, +)$ generated by 1.

Proof. Observe that

 $n \cdot a = a + \dots + a = a(1 + \dots + 1) = a(n \cdot 1)$

Thus $n \cdot 1 = 0 \iff n \cdot a = 0$ for all $a \in R$.

Further Examples of Characteristics

- 1. The characteristic of $\mathbb{Z}_{15} \times \mathbb{Z}_{20}$ is the order of (1, 1): this is lcm(15, 20) = 60.
- 2. If *R* is a commutative ring with characteristic 3, then

$$(a+b)^3 = a^3 + 3 \cdot a^2b + 3 \cdot ab^2 + b^3 = a^3 + b^3$$

3. Let *R* be a ring and M(R) be the set of 3×3 matrices with entries in *R* and whose first column is zero. This is a non-unital ring, even if *R* has a unity. Its characteristic is the same as that of *R*.

20 Fermat's and Euler's Theorems

Recall Theorem 18.7: If *R* is a ring with unity, then the set of units in *R* forms a *group under multiplication*. Applying this to \mathbb{Z}_n recovers a famous discussion.

Definition 20.1. Let $\varphi(n) = |\mathbb{Z}_n^{\times}|$ denote the order of the group of units in \mathbb{Z}_n . The function $\varphi : \mathbb{N} \to \mathbb{N}$ is caller *Euler's totient function*.

Theorem 20.2 (Euler's Theorem). If $a \in \mathbb{Z}_n^{\times}$ is a unit, then $a^{\varphi(n)} \equiv 1 \mod n$.

Proof. By Lagrange's Theorem, the order *k* of an element *a* divides the order of the group $\varphi(n)$. Thus $k = \frac{\varphi(n)}{d}$ for some *d*. But then

$$a^{\varphi(n)} \equiv \left(a^k\right)^d \equiv 1^d \equiv 1 \mod n$$

This result is known as *Fermat's Little Theorem* if *n* is prime (then \mathbb{Z}_p^{\times} has order $\varphi(p) = p - 1$). The theorems of Fermat and Euler, and the function φ , have many applications, particularly in Number Theory. Here are a few highlights.

Theorem 20.3 (Computing φ). 1. If p is prime, then $\varphi(p^k) = p^{k-1}(p-1) = p^k \left(1 - \frac{1}{p}\right)$.

2. Euler's function is multiplicative: that is,

$$gcd(m,n) = 1 \implies \varphi(mn) = \varphi(m)\varphi(n)$$

3. For any positive integer $n \ge 2$ *,*

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right)$$

Sketch Proof. 1. An element of \mathbb{Z}_{p^k} is relatively prime to p^k if and only if it is *not* divisible by p. The remainders divisible by p all have the form

sp where $s \in \{0, 1, 2, \dots, p^{k-1} - 1\}$

In particular, there are p^{k-1} remainders divisible by p, and so $\varphi(p^k) = p^k - p^{k-1}$ remainders which are not.

2. Take a course in number theory if you want to see a full argument for this! Here is an easy special case. Suppose $p \neq q$ are distinct primes. If $x \in \mathbb{Z}_{pq}$ is non-zero, then gcd(x, pq) = 1, p or q. It should be clear that

$$gcd(x, pq) = p \iff x = sp$$
 where $s \in \{1, 2, ..., q-1\}$ and,
 $gcd(x, pq) = q \iff x = tq$ where $t \in \{1, 2, ..., p-1\}$

and that there is no overlap between these lists. Since $0 \in \mathbb{Z}_{pq}$ is not a unit, it follows that the number of non-units in \mathbb{Z}_{pq} is

$$\varphi(pq) = pq - p - q + 1 = (p - 1)(q - 1)$$

3. This follows immediately from 1 and 2: given the unique prime factorization

$$n = p_1^{\mu_1} \cdots p_k^{\mu_k} \implies \varphi(n) = \prod_{i=1}^k \varphi(p_i^{\mu_i}) = \prod_{i=1}^k p_i^{\mu_i} \left(1 - \frac{1}{p_i}\right) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Example: computing large powers To compute $197^{2018} \in \mathbb{Z}_{200}$, note first that $\varphi(200) = 200 \cdot \frac{1}{2} \cdot \frac{4}{5} = 80$ and that gcd(197, 200) = 1, so that 197 is a unit. But then Euler's Theorem tells us that

$$197^{2018} = 197^{80 \cdot 25 + 18} = (197^{80})^{25} \cdot 197^{18} = 3^{18}$$

A little computation shows that $3^3 = 27$, $3^6 = 129$, $3^{12} = 41$, $3^{18} = 89$ whence $197^{2018} = 89 \in \mathbb{Z}_{200}$.

Example: solving congruences To solve a congruence such as $x^7 \equiv 5 \mod 33$ we could laboriously check for *every* value of $x \in \mathbb{Z}_{33}$. Instead, suppose a solution x exists and let $d = \gcd(x, 33)$. Then $d \mid x^7$, and so $d \mid 5$. But this means that d is a common divisor of 5 and 33: d must be 1! It follows that any possible solution is a *unit*.

To apply Euler's Theorem requires a little trick: we want to raise both sides of the original equation to a power *u* such that $7u \equiv 1 \mod \varphi(33)$. That is,

 $7u \equiv 1 \mod 20 \implies 21u \equiv 3 \mod 20 \implies u \equiv 3 \mod 20$

Now apply Euler's Theorem:

 $x^7 \equiv 5 \implies x^{21} \equiv 5^3 \implies x \equiv 5^3 \equiv 25 \cdot 5 \equiv -8 \cdot 5 \equiv 26 \mod 33$

The structure of the group of units: non-examinable/open-book

The group of units in the ring \mathbb{Z}_n is somewhat complicated: in general it can be quite difficult to identify the group structure. We do have the following result, which we state without proof.

Theorem 20.4. \mathbb{Z}_n^{\times} is cyclic if and only if $n = 2, 4, p^k$ or $2p^k$ where p is an odd prime.

Definition 20.5. If \mathbb{Z}_n^{\times} is cyclic, any generator is termed a *primitive root* modulo *n*.

Corollary 20.6. *If g is a primitive root modulo n, then* g^s *is a primitive root if and only if* $gcd(\varphi(n), s) = 1$ *. In particular, there are* $\varphi(\varphi(n))$ *primitive roots.*

Proof. This is immediate from our knowledge of subgroups of cyclic groups. If *g* is a primitive root modulo *n*, then $\mathbb{Z}_n^{\times} = \langle g \rangle$. The cyclic subgroup $\langle g^s \rangle$ has order $\frac{\varphi(n)}{\gcd(\varphi(n),s)}$.

Examples

1. n = 14 has a primitive root, namely g = 3. We check

$$\langle 3 \rangle = \{3, 9, 13, 11, 5, 1\} = \mathbb{Z}_{14}^{\times}$$

There are $\varphi(\varphi(14)) = \varphi(6) = 2$ primitive roots, the other being 5. The group of units is isomorphic to \mathbb{Z}_6 .

2. $\mathbb{Z}_8^{\times} = \{1, 3, 5, 7\}$ is not cyclic. Since every element is its own inverse, we conclude that $\mathbb{Z}_8^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ is isomorphic to the Klein 4-group.

Finally, recall Corollary 18.10, if gcd(m, n) = 1, then $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$ is a ring isomorphism and so units correspond. Moreover $(x, y) \in \mathbb{Z}_m \times \mathbb{Z}_n$ is a unit if and only if $x \in \mathbb{Z}_m^{\times}$ and $y \in \mathbb{Z}_n^{\times}$ (its inverse is $(x, y)^{-1} = (x^{-1}, y^{-1})$. We can easily generalize:

Corollary 20.7. If $n = p_1^{\mu_1} \times \cdots \times p_k^{\mu_k}$ is the unique prime factorization of n, then

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{\mu_1}} \times \cdots \times \mathbb{Z}_{p_k^{\mu_k}}$$

is a ring isomorphism and

$$\mathbb{Z}_n^{\times} \cong \mathbb{Z}_{p_1^{\mu_1}}^{\times} \times \cdots \times \mathbb{Z}_{p_k^{\mu_k}}^{\times}$$

is a group isomorphism.

Example \mathbb{Z}_{65}^{\times} has order $\varphi(65) = 65 \cdot \frac{4}{5} \cdot \frac{12}{13} = 48$. By the Corollary,

 $\mathbb{Z}_{65}^{\times} = \mathbb{Z}_{5:13}^{\times} \cong \mathbb{Z}_5^{\times} \times \mathbb{Z}_{13}^{\times} \cong \mathbb{Z}_4 \times \mathbb{Z}_{12}$

since both 5 and 13 are prime.

21 The Field of Quotients of an Integral Domain

A *field* is the closest one can get to having a set $(F, +, \cdot)$ which is an abelian group with respect to *two distinct distributing operations*: we always have to exclude at least 0 from the multiplicative group structure. Fields, and the ability to divide, are so useful that it is helpful to be able to embed any integral domain in a field. Essentially we wish to do the following:

Given an integral domain *D*, find the *smallest field F* such that *D* is isomorphic to a subdomain of *F*.

Here is the approach whereby we construct \mathbb{Q} from \mathbb{Z} . This is lengthy, but worth the read!

1. Define a relation \sim on $S := \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ by

$$(a,b) \sim (c,d) \iff ad = bc$$

2. Prove that \sim is an equivalence relation on *S*:

Reflexivity $\forall (a,b) \in S, ab = ba \implies (a,b) \sim (a,b).$ Symmetry $\forall (a,b), (c,d) \in S,$

$$(a,b) \sim (c,d) \implies ad = bc \implies cb = da \implies (c,d) \sim (a,b)$$

Transitivity \forall (*a*,*b*), (*c*,*d*), (*e*, *f*) \in *S*,

$$(a,b) \sim (c,d) \text{ and } (c,d) \sim (e,f) \implies ad = bc \text{ and } cf = de$$
$$\implies adcf = bcde \implies cd(af - be) = 0$$
$$\implies c(af - be) \qquad (\text{since } d \in \mathbb{Z} \setminus \{0\})$$
$$\implies c = 0 \text{ or } af = be$$
$$\implies c = 0 \text{ or } (a,b) \sim (e,f)$$

However, if c = 0, then a = 0 = e (since $d \neq 0$), in which case af = be and we still have $(a, b) \sim (e, f)$.

3. Define $\mathbb{Q} = \frac{S}{\sim} = \{[(a, b)] : (a, b) \in S\}$ to be the set of equivalence classes of \sim in *S*. We claim that \mathbb{Q} inherits a field structure from \mathbb{Z} in a natural way. Define operations + and \cdot on \mathbb{Q} by

 $[(a,b)] + [(c,d)] := [(ad + bc,bd)], \qquad [(a,b)] \cdot [(c,d)] := [(ac,bd)]$

• These are well-defined operations: if $(a,b) \sim (p,q)$ and $(c,d) \sim (r,s)$, then aq = bp and cs = dr. But then

$$[(p,q)] + [(r,s)] = [(ps + qr, qs)]$$

However,

$$(ad + bc)qs - bd(ps + qr) = (aq - bp)ds + (cs - dr)bq = 0$$

 $\implies [(p,q)] + [(r,s)] = [(a,b)] + [(c,d)]$

Similarly,

$$acqs - bdpr = aqcs - aqcs = 0 \implies [(p,q)] \cdot [(r,s)] = [(a,b)] \cdot [(c,d)]$$

It follows that Q is closed under both operations.

• The operations are associative. This is tedious: it suffices to observe that

$$[(a,b)] + [(c,d)] + [(e,f)] = [(adf + bcf + bde, bdf)] \text{ and,} [(a,b)] \cdot [(c,d)] \cdot [(e,f)] = [(ace, bdf)]$$

regardless of which operation one computes first.

- The operations are commutative: this is immediate by inspection.
- Both operations have identities:

$$0_{\mathbb{Q}} = [(0,1)], \qquad 1_{\mathbb{Q}} = [(1,1)]$$

• Both operations have inverses:

$$-[(a,b)] = [(-a,b)], \qquad [(c,d)]^{-1} = [(d,c)]$$
 (provided $[(c,d)] \neq 0_Q$)

• The distributive laws hold: for instance,

$$([(a,b)] + [(c,d)]) \cdot [(e,f)] = [(ad + bc,bd)] \cdot [(e,f)]$$

= [(ade + bce,bdf)] = [(adef + bcef,bdf²)]
= [(ae,bf)] + [(ce,df)]
= [(a,b) \cdot [(e,f)] + [(c,d)] \cdot [(e,f)]

The other is similar.

The upshot is that we've *defined a field* $(\mathbb{Q}, +, \cdot)$. Of course it is customary to write $\frac{a}{b} = [(a, b)]$ so that the addition and multiplication operations become the familiar expressions

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

but we keep the old notation just a while longer...

4. Observe that the subring $\widehat{\mathbb{Z}} := \{ [(a, 1)] : a \in \mathbb{Z} \}$ is isomorphic to \mathbb{Z} . For this, define the function

$$\mu: \mathbb{Z} \to \widehat{\mathbb{Z}}: a \mapsto [(a, 1)]$$

and check that μ is an isomorphism of rings.

Bijectivity μ is certainly surjective by definition. Moreover,

$$\mu(a) = \mu(b) \implies (a,1) \sim (b,1) \implies a \cdot 1 = 1 \cdot b \implies a = b$$

whence μ is injective.

Homomorphism It is easy to check that

$$\mu(a+b) = [(a+b,1)] = [(a,1)] + [(b,1)] = \mu(a) + \mu(b)$$

$$\mu(ab) = [(ab,1)] = [(a,1)] \cdot [(b,1)] = \mu(a) \cdot \mu(b)$$

The result is that we've *defined* a field \mathbb{Q} containing an isomorphic copy of the integral domain \mathbb{Z} .

Generalizing So far, so exciting: we've laboriously defined and checked the consistency of an object Q with which we've been working for years. The next observation is crucial: check *every* step of the argument:

To construct \mathbb{Q} , all we required was that \mathbb{Z} be an *integral domain*!

The lack of zero-divisors is required to prove the transitivity of \sim while the fact that \mathbb{Z} is a commutative ring is needed repeatedly.¹¹ The upshot is that we can repeat the construction for *any integral domain*.

Definition 21.1. Let *D* be an integral domain. Define the equivalence relation \sim on $S = D \times (D \setminus \{0\})$ by

 $(a,b) \sim (c,d) \iff ad = bc$

The *field of quotients* $\operatorname{Frac}(D)$ of *D* is the field $S/_{\sim}$ with operations

 $[(a,b)] + [(c,d)] := [(ad + bc,bd)], \qquad [(a,b)] \cdot [(c,d)] := [(ac,bd)]$

The notation is unwieldy, but before we can make everything simpler we need to prove perform one piece of housekeeping.

Theorem 21.2. 1. Everything in the definition is as claimed: \sim is an equivalence relation, the operations are well-defined and Frac(D) really is a field.

2. The subring

 $R = \{ [(a,1)] : a \in D \}$

is ring-isomorphic to D.

- 3. If *L* is any field containing *D* as a subring, then there exists a function ψ : Frac(*D*) \rightarrow *L* such that
 - (a) ψ is an isomorphism of Frac(D) onto a subfield of L,
 - (b) $\forall a \in D, \psi([(a, 1)]) = a.$

Remarks and Notation

- We've proved parts 1 and 2 in the above discussion: simply replace Z with D, Q with Frac(D) and Ẑ with R.
- Atter completing the proof, we will typically write ab^{-1} for the element $[(a,b)] \in Frac(D)$. Under this identification, we see that a = [(a,1)] for every $a \in D$, whence parts 2. and 3. become R = D and $\psi(a) = a$.

¹¹It might appear that the existence of the unity $1 \in \mathbb{Z}$ is required to define 0_Q , 1_Q and to identify $\widehat{\mathbb{Z}} \leq Q$, but these can be done via

 $0_{\mathbb{Q}} := [(0,b)], \qquad 1_{\mathbb{Q}} := [(b,b)], \qquad \widehat{\mathbb{Z}} = \{ [(ab,b) : a \in \mathbb{Z} \}$

where *b* is *any* non-zero integer. The construction is therefore valid in any commutative ring with no zero-divisors.

Proof of 3. Wtart by defining ψ . Since $D \leq L$, we see that *every non-zero element of D is invertible in the field L*. It follows that we can define

$$\psi([(a,b)]) = ab^{-1}$$

where ab^{-1} is computed in *L*. Now observe that

$$[(a,b)] = [(c,d)] \iff (a,b) \sim (c,d) \iff ad = bc$$
$$\iff ab^{-1} = b^{-1}a = cd^{-1}$$
$$\iff \psi([(a,b)]) = \psi([(c,d)])$$

whence ψ is well-defined and injective. We also clearly have $\psi([(a, 1)]) = a \in L$. Moreover,

$$\psi([(a,b)] + \psi([(c,d)]) = ab^{-1} + cd^{-1} = (ad + bc)(bd)^{-1} = \psi([(a,b)] + [(c,d)])$$

and

$$\psi([(a,b)] \cdot \psi([(c,d)]) = ab^{-1}cd^{-1} = (ac)(bd)^{-1} = \psi([(a,b)] \cdot [(c,d)])$$

whence ψ is an isomorphism onto its image.

The third part of the theorem is hugely important: it says that Frac(D) is the *smallest field* containing D in the sense that every field containing D must contain an isomorphic copy of Frac(D).

Examples

1. Suppose that *D* is already a field (this is automatic if *D* is a *finite* integral domain). Revisit the construction:

$$(a,b) \sim (c,d) \iff ad = bc \iff ab^{-1} = cd^{-1}$$
 in D!

It follows that the field of quotients is (isomorphic to) D itself.

2. Consider the integral domain $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$. Its field of quotients consists of all elements

$$\frac{a+b\sqrt{2}}{c+d\sqrt{2}} = \frac{(a+b\sqrt{2})(c-d\sqrt{2})}{c^2-2d^2} = \frac{(ac-2bd)+(bc-ad)\sqrt{2}}{c^2-2d^2}$$

so that we obtain the field¹²

$$\mathbb{Q}(\sqrt{2}) := \{p + q\sqrt{2} : p, q \in \mathbb{Q}\}$$

¹²One can easily obtain any element of $\mathbb{Q}(\sqrt{2})$ by setting d = 0 and taking *c* to be the least common multiple of the denominators of *p*, *q*.