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• An Introduction to Abstract Algebra, John Fraleigh, 7th Ed 2003, Adison–Wesley (optional).

Brief reminder of groups

You should be familiar with the majority of what follows though there is a lot of time to remind
yourself of the harder material! Try to complete the proofs of any results yourself.

Definition. A binary structure (G, ·) is a set G together with a function · : G× G → G. We say that G
is closed under · and typically write · as juxtaposition.1

A semigroup is an associative binary structure:

∀x, y, z ∈ G, x(yz) = (xy)z

A monoid is a semigroup with an identity element:

∃e ∈ G such that ∀x ∈ G, ex = xe = x

A group is a monoid in which every element has an inverse:

∀x ∈ G, ∃x−1 ∈ G such that xx−1 = x−1x = e

A binary structure is commutative if ∀x, y ∈ G, xy = yx. A group with a commutative structure is
termed abelian.

A subgroup2 is a non-empty subset H ⊆ G which remains a group under the same binary operation. We
write H ≤ G.

Lemma. H is a subgroup of G if and only if it is a non-empty subset of G closed under multiplication and
inverses in G.

Standard examples of groups: sets of numbers under addition (Z, Q, R, nZ, etc.), matrix groups.

Standard families: cyclic, symmetric, alternating, dihedral.

1You should be comfortable with both multiplicative and additive notation.
2More generally any substructure.
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Cosets and Factor Groups

Definition. If H ≤ G and g ∈ G, then the left coset of H containing G is the set

gH = {gh : h ∈ H}

Clearly k ∈ gH ⇐⇒ ∃h ∈ H such that k = gh ⇐⇒ k−1g ∈ H.

The right coset Hg is defined similarly.

A subgroup H of G is normal (written H / G) if gH = Hg for all g ∈ G.

Lemma. H / G ⇐⇒ ∀g ∈ G, h ∈ H we have ghg−1 ∈ H

Theorem. The set of (left) cosets of H / G has a natural group structure defined by g1H · g2H := (g1g2)H.
We call this the factor group G

/
H

.

Definition. For each n ∈N, we define Zn = Z
/

nZ
.

Homomorphisms

Definition. A function φ : (G, ·)→ (H, ?) of binary structures is a homomorphism if

∀x, y ∈ G, φ(x · y) = φ(x) ? φ(y)

An isomorphism is a bijective homomorphism: we write G ∼= H if there exists an isomorphism from
G to H.
If φ is a homomorphism of groups, then its kernel and image are the sets

ker φ = {g ∈ G : φ(g) = e} Im φ = {φ(g) : g ∈ G}

Lemma. ker φ / G.

Theorem (1st isomorphism theorem). 1. If φ : G → H is a homomorphism, then G
/

ker φ
∼= Im φ via

the isomorphism

µ(gH) := φ(g)

2. If H / G then γ : G → G
/

H
defined by γ(g) = gH is a homomorphism, whence every factor group

appears as in part 1.

Example Let ζ = e
2πi

9 and define

φ : Z→ C : x 7→ ζx

This is a homomorphism with kernel ker φ = 9Z: the 1st isomorphism theorem reads

Z
/

9Z
∼= Im φ = {1, ζ, ζ2, . . . , ζ8}

which is the multiplicative group of 9th roots of unity.
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18 Rings and Fields

Definition 18.1. A ring is a set R with two binary operations + and · (always called addition and
multiplication) for which:

1. (R,+) is an abelian group.

2. (R, ·) is a semigroup (R is closed under · and · is associative).

3. The left and right distributive laws hold:

∀x, y, z ∈ R, x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z

A ring is simply an abelian group (axiom 1) with a bit of extra structure that making it behave sim-
ilarly to the integers: we have a notion of multiplication (axiom 2) which interacts with addition
(axiom 3) in the expected way. Rings often feel easier than groups because they behave so similarly
to the familiar integers.

Definition 18.2. A ring (R,+, ·) is commutative if · is commutative.

Simple Examples

• Sets of numbers: Z, nZ, Q, R, C with the usual addition and multiplication. These are all
commutative rings.

• The set of polynomials R[x] whose coefficients lie in some ring R. The addition and multiplica-
tion are inherited from that of R. For instance, if R = Z, then

(1 + 3x2)(2x− 4x2) = 2x− 4x2 + 6x3 − 12x4

R[x] will be commutative precisely when R is commutative. More generally, the set of functions
f : R→ R also forms a ring using the addition and multiplication of elements in R.

• The set Mn(R) of n × n matrices whose entries lie in a ring R. Typically Mn(R) is a non-
commutative ring, regardless of whether R is commutative.

• The quaternions are the set

Q = {w + ix + jy + kz : w, x, y, z ∈ R, i2 = j2 = k2 = −1, ij = k etc.}

Think of this like a copy of R4 with basis {1, i, j, k}. Addition is the usual addition in R4.
Multiplication works as with the complex numbers: i, j and k act like three different copies of
the imaginary unit i. Finally, distinct elements i, j, k multiply following the right-hand rule for
cross-products:

ij = k = −ji, jk = i = −kj, ki = j = −ik

It is a little work to check that (Q, ·) is associative. Since, e.g., ij = −ji, we have a non-
commutative ring.
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• The factor rings Zn = Z
/

nZ
are defined in the same manner as for groups: we will do this more

formally later. It is perfectly acceptable to write

Zn = {0, 1, . . . , n− 1}

as long as you appreciate that the symbol x refers to the equivalence class of integers

[x] = {x + λn : λ ∈ Z}

• A direct product of rings R1 × · · · × Rk is defined exactly as for groups. For example, in the ring
Z×M2(R) we could write(

2,
(

2 1
3 2

))
·
(
−3,

(
1 −2
0 1

))
=

(
−6,

(
2 −3
3 −4

))

Non-examples of rings

• The natural numbers N do not form an abelian group under addition.

• Mm×n(R) (if n 6= m): multiplication is not well-defined.

• General vector spaces are not rings: there is no natural sense of product! You might suspect
that (R3,+,×) is a ring, where × is the cross-product. However, observe that

i× (i× j) = i× k = −j 6= 0 = (i× i)× j

The product is not associative! Non-associative algebras are extremely important (Lie Algebras
rule parts geometry and of Physics) but they are not rings.

Conventions

We’ve already started following some of these as the conventions are similar to those you are used to
following from group theory.

• We will usually just say ‘the ring R,’ rather than (R,+, ·), unless the operations are not clear.

• You should assume that R is a ring unless otherwise stated: e.g. Z, Zn, etc., are always rings in
this course. If we need to refer to the additive group of a ring, we will write (R,+).

• Since (R,+) is an abelian group, it is typical to denote the additive identity by 0. Thus,3

∀x ∈ R, 0 + x = x

We similarly denote additive inverses using negatives:

∀x ∈ R, x + (−x) = 0
3We only need one side of the identity axiom: x + 0 = x is superfluous since + is commutative.
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• Use juxtaposition and exponentiation notation for multiplication unless in the dot is helpful:
thus

x · x · x = xxx = x3

• If n is a positive integer and x ∈ R, we will write

n · x = x + · · ·+ x︸ ︷︷ ︸
n times

This requires a little care: if R is any ring and x ∈ R, we can always write, for instance

3 · x = x + x + x

In the special case where 3 ∈ R (say if R = Z), then 3 · x = 3x since we really can multiply 3 by
x within R. In general, however, this makes no sense: for example 3x is meaningless within the
ring 2Z of even integers, since 3 6∈ 2Z.

Basic Results The basic theorems regarding groups necessarily hold: we state these without proof.

Lemma 18.3. If (R,+, ·) is a ring, then the additive identity 0 and additive inverses are unique. Moreover,
the left- and right-cancellation laws hold:

x + y = x + z =⇒ y = z, and x + z = y + z =⇒ x = y

The first genuine results concerning rings involve the interaction of the additive identity with multi-
plication: essentially this first theorem tells us that 0 and negative signs behave exactly as we expect.

Theorem 18.4 (Laws of Signs). Let R be a ring:

1. ∀x ∈ R, 0x = x0 = 0

2. ∀x, y ∈ R, x(−y) = (−x)y = −xy

3. ∀x, y ∈ R, (−x)(−y) = xy

Proof. 1. Since (R,+) is an additive group, we have 0 = 0 + 0. Multiplying on the right by x and
applying a distributive law yields

0x = (0 + 0)x = 0x + 0x

Cancelling 0x from both sides (Lemma 18.3) gives half the result; the remainder follows sym-
metrically.

2. Apply the distributive law to compute

(xy) + (−x)y = (x + (−x))y = 0y = 0 =⇒ −(xy) = (−x)y

The other version of this is similar.

3. Finally, we apply the first and second results repeatedly:

(−x)(−y) = −(x(−y)) = −(−(xy)) = xy
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Further multiplicative structure

Most commonly, we will consider rings where multiplication has more than simple associativity.

Definition 18.5. A ring R is a ring with 1, or a ring with unity, if (R, ·) is a monoid (an associative binary
structure with an identity). In such a case the4 unity, or multiplicative identity, is abstractly denoted 1.

If R is a ring with unity 1 6= 0, then an element x ∈ R is a unit if it has a multiplicative inverse:

x a unit ⇐⇒ ∃x−1 ∈ R such that xx−1 = x−1x = 1

A ring with unity 1 6= 0 is a division ring or skew field is a ring with unity in which every non-zero
element is a unit.
A field is a commutative division ring.

To a great many authors ‘ring’ means ‘ring with unity 1 6= 0:’ this assumption is made so often that it
is easy to miss and guarantees that the ring has at least two elements. It is common to refer to a ring
without unity as a rng (no i!), a pseudo-ring or a non-unital ring if clarity is required. For our purposes,
a ring may or may not have a unity: when it does, we will make the standard assumption that 1 6= 0.

Examples

• Z is a commutative ring with unity. The only units are ±1.

• nZ has no identity if n ≥ 2 and thus no units.

• Q, R and C are fields.

• If R is a ring with unity, then so is R[x]: the multiplicative identity is the constant polynomial
1. The set of functions { f : R→ R} behaves similarly.

• Mn(R) is a ring with unity if R is such: the identity matrix is exactly as you expect.

• The quaternions form a non-commutative division ring. To see this, note that we can define a
modulus exactly as with complex numbers:

|q|2 := qq = (w + ix + jy + kz)(w− ix− jy− kz) = w2 + x2 + y2 + z2

Clearly |q| = 0 ⇐⇒ q = 0, and q−1 = q
|q|2

.

It is worth recalling some elementary number theory for our next result:

Theorem 18.6. x ∈ Zn is a unit if and only if gcd(x, n) = 1. Thus Zn is a field if and only if n is prime.

Proof. Recall Bézout’s identity:

gcd(x, n) = 1 ⇐⇒ ∃λ, µ ∈ Z such that λx + µn = 1

It should be clear that λ is an inverse to x in Zn.

4The definite article is appropriate here. The proof that the identity is unique in a group only requires closure, thus a
ring with unity has only one unity! Explicitly, if 1 and 1̂ are unities, then 1 · 1̂ must both be 1 and 1̂. . .
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Theorem 18.7. If R is a ring with unity, then the set of units U ⊆ R forms a group under multiplication.

Proof. If u, v ∈ U, quickly check that v−1u−1 is an inverse of uv, whence U is closed under multipli-
cation. The associativity, identity and inverse axioms are essentially trivial.

The set of units is often denoted R×: for example,

Z×10 = {1, 3, 7, 9}

Notice that 3 is a generator of this group (〈3〉 = {3, 9, 7, 1}) and so Z×10
∼= Z4 is cyclic.5

Homomorphisms and Isomorphisms

At first glance these work exactly as for groups. The first novelty is that they must preserve both
binary structures:

Definition 18.8. Let R, S be rings. A function φ : R→ S is a homomorphism if

∀x, y ∈ R,

{
φ(x + y) = φ(x) + φ(y)
φ(xy) = φ(x)φ(y)

Additionally, φ is an isomorphism if it is bijective. We write R ∼= S exactly as with isomorphic groups.
It should be clear that φ : (R,+)→ (S,+) is automatically a homo/isomorphism of groups.

One delicacy6 is that, if both R, S are rings with unity, then it is common to additionally assume
φ(1R) = 1S. This is not guaranteed! For example,

φ : Z→ Z : x 7→ 0

is a homomorphism, although it is extremely boring. Indeed, suppose that ψ : Z → Z is a homo-
morphism and compute

ψ(1) = ψ(1 · 1) = (ψ(1))2 =⇒ ψ(1) = 0 or 1

Since we also require

∀x ∈ Z+, ψ(x) = ψ(1 + 1 + · · ·+ 1) = ψ(1) + · · ·+ ψ(1) = x · ψ(1)

and similarly for negative numbers, it follows that the only ring homomorphisms ψ : Z→ Z are

ψ(x) = 0 or ψ(x) = x

This is much more restrictive that with groups.7 Some of this discussion is worth generalizing:

Theorem 18.9. Suppose φ : R→ S is a homomorphism and R is a ring with unity. If n ∈ Z, then

φ(n) = n · φ(1)

In the general context when R does not contain integers, n = 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

5In number theory, the generator 3 is called a primitive root modulo 10. Not all n have primitive roots: indeed the group
of units is rarely cyclic.

6See the comment on non-unital rings on the previous page.
7Recall that φ(x) = kx defines a group homomorphism φ : Z→ Z for any k ∈ Z.
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Proof. If n = 0, this is simply the group theoretic result that φ(0R) = 0S: recall,

φ(0R) = φ(0R + 0R) = φ(0R) + φ(0R) =⇒ φ(0R) = 0S

by cancellation. When n ≥ 1 this is simple induction on n. Finally, when n ≤ −1 the fact that
φ(−n) = −φ(n) (basic group theory again) finishes things off.

We are now in a position to extend our discussion of direct products of finite cyclic groups.

Corollary 18.10. Zmn ∼= Zm ×Zn ⇐⇒ gcd(m, n) = 1

Proof. Note that the result is already true for additive groups,8 where we observed that (1, 1) is a
generator of Zm ×Zn whenever gcd(m, n) = 1. This corresponds to the function

φ : Zmn → Zm ×Zn : x 7→ (x, x)

being an isomorphism. It remains only to see that φ is also an isomorphism of rings. But this is trivial:

φ(xy) = (xy, xy) = (x, x) · (y, y) = φ(x) · φ(y)

Example Find all isomorphisms φ : Z12 → Z3 ×Z4.

Let φ(1) = (a, b): since φ is to be a homomorphism of additive groups, we see that

φ(x) = x · φ(1) = (ax, bx)

To be an additive isomorphism, we need the order of (a, b) to be 12, whence gcd(a, 3) = 1 = gcd(b, 4).
There are four group isomorphisms φ : Z12 → Z3 ×Z4, corresponding to the generators

(a, b) = (1, 1), (1, 3), (2, 1), (2, 3)

To be a ring homomorphism, we also require

φ(xy) = (axy, bxy) = (a2xy, b2xy) = (ax, bx) · (ay, by) = φ(x) · φ(y)

for all x, y. This clearly requires a2 ≡ a mod 3 and b2 ≡ b mod 4. Of the above choices, only
(a, b) = (1, 1) works. There is therefore exactly one ring isomorphism.

The above can be generalized: Suppose that gcd(m, n) = 1 so that Zmn ∼= Zm ×Zn

• Every group isomorphism φ : Zmn → Zm ×Zn has the form φ(x) = (ax, bx) where gcd(a, m) =
1 = gcd(b, n), so that a ∈ Z×m and b ∈ Z×n are both units.

8It also follows from the previous result. If φ : Zmn → Zm ×Zn is a homomorphism, then φ(x) = x · φ(1). Letting
φ(1) = (a, b), we see that φ(x) = (ax, bx). However

(0, 0) = φ(x) = (ax, bx) ⇐⇒
{

ax ≡ 0 mod m
bx ≡ 0 mod n

φ is surjective only if x = mn is the smallest positive integer satisfying the above. But this is if and only if gcd(a, m) = 1 =
gcd(b, n) = gcd(m, n).
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• Every ring isomorphism must be a group isomorphism and additionally satisfy

a2 ≡ a mod m and b2 ≡ b mod n

Since a, b are already units, it follows that the only possibility is to have a = 1 and b = 1. There
is always only one isomorphism!

Indeed this is a special case of a useful theorem.

Theorem 18.11. Having a unity is a structural property. Specifically, suppose that φ : R → S is a ring
isomorphism (or merely a surjective ring homomorphism) and that R is a ring with unity. Then S is a ring
with unity and 1S = φ(1R).

Proof. For all x ∈ R, we have

φ(x) = φ(1Rx) = φ(1R)φ(x)

and similarly φ(x) = φ(x)φ(1R). Since φ is surjective, it follows that φ(1R)y = y = yφ(1R) for all
y ∈ S.

In particular, if φ : R → S is a surjective homomorphism where the group (R,+) is cyclic, then
φ(x) = x · 1S. In our previous example, we are forced to take φ(1) = (1, 1) (the unity in Zm ×Zn),
whence φ(x) = (x, x).

Subrings

Just as with groups, we can define substructures.

Definition. Let (R,+, ·) be a ring. A subset S is a subring of R if (S,+, ·) is a ring. We have a similar
notion for subfield.

Since every subring of R is necessarily a subgroup of (R,+), we can start hunting for subrings by
first considering subgroups.

Examples

1. Subrings of Z. Every subgroup has the form nZ for some n ∈ N0. Since the set of multiples of
n is closed under multiplication, these are also subrings.
In contrast to group theory, note that Z � nZ when n 6= 1. If we had an isomorphism, φ : Z→
nZ then it must also be an isomorphism of groups, whence φ(1) would have to be a generator:
the only options are φ(1) = ±n =⇒ φ(x) = ±nx. But for this to be a ring isomorphism, we’d
need

∀x, y ∈ Z, φ(xy) = φ(x)φ(y) =⇒ ±nxy = nxny

a contradiction.

2. A similar game can be played in Zn. Every subgroup of (Zn,+) has the form 〈d〉 = {kd :
k ∈ Z} where d | n. Since (kd)(ld) is still a multiple of d, the subset 〈d〉 is closed under
multiplication and is thus a subring. The subrings of Zn are therefore precisely the subgroups
of Zn.
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3. Warning! In general, not all subgroups of (R,+) are going to be subrings of R. Take, for example,
〈(1, 2)〉 ≤ Z×Z as the cyclic subgroup generated by (1, 2). This is not a subring of Z×Z since
it is not closed under multiplication:

(1, 2) · (1, 2) = (1, 4) 6∈ 〈(1, 2)〉

19 Integral Domains

The ability to factorize is of crucial importance in mathematics. For instance,

x2 = x ⇐⇒ x2 − x = 0 ⇐⇒ x(x− 1) = 0 ⇐⇒ x = 0, or 1 (∗)

This calculation should feel completely natural, but is it always legitimate? Certainly we feel confident
if x is restricted to the real or complex numbers. What about if x ∈ Zn for some n? We can easily find
all the solutions to x2 ≡ x mod n for all small n by inspection: here is what we find.

n solutions x to x2 ≡ x
2 0, 1
3 0, 1
4 0, 1
5 0, 1
6 0, 1, 3, 4
7 0, 1
8 0, 1
9 0, 1
10 0, 1, 5, 6

While the solutions are usually as expected, when n = 6 or 10 we have extras! Indeed the extra
solutions correspond to alternative factorizations: for example

(x− 5)(x− 6) ≡ x2 − 11x + 30 ≡ x2 − x mod 10

With a little thinking, it should become clear that we will never have this problem of multiple factor-
izations when n is a prime:9 consider

x(x− 1) ≡ 0 mod p ⇐⇒ p | x(x− 1) ⇐⇒ p | x or p | x− 1 ⇐⇒ x ≡ 0, 1 mod p

This is because it is impossible to have non-zero remainders multiplying to give 0. We make a general
definition.

Definition 19.1. If a, b ∈ R are non-zero elements for which ab = 0, we say that a, b are zero-divisors.

For example, 2 · 5 = 0 ∈ Z10, 2 · 3 = 0 ∈ Z6,
(

1 1
3 3

)(
1 −2
−1 2

)
= 0 ∈ M2(R).

Definition 19.2. An integral domain is a commutative ring with unity which has no zero-divisors.

The most obvious example of an integral domain is the integers themselves! Clearly ab = 0 =⇒
a = 0 or b = 0. This is true for any of the standard rings of numbers: Z, Q, R, C. Indeed:

9Recall that p ∈N≥2 is prime if p | ab =⇒ p | a or p | b.
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Theorem 19.3. Every field is an integral domain.

Proof. Every field is a commutative ring with unity. Moreover, if a is a zero-divisor, then it is a non-
zero element and thus a unit. Clearly

ab = 0 =⇒ b = 0

after multiplying by a−1 on the left (this is precisely th argument (†) above. But then a is not a zero-
divisor!

With finite domains, things are also very straightforward:

Lemma 19.4 (Cancellation laws). If R is a ring without zero divisors10 then

∀a 6= 0, ∀b, c, ab = ac =⇒ b = c and ba = ca =⇒ b = c

Proof. ab = ac =⇒ a(b− c) = 0 =⇒ a = 0 or b− c = 0. Since a 6= 0 we conclude that b = c.

Theorem 19.5. Every finite integral domain is a field.

Proof. Suppose that R is a finite integral domain and let a ∈ R be non-zero. Consider the function
f : R→ R defined by

f (x) = ax

By the cancellation laws,

f (x) = f (y) =⇒ ax = ay =⇒ x = y

whence f is injective. Since R is finite, it follows that f is bijective. But then ∃b ∈ R such that f (b) = 1.
Otherwise said, ab = 1 and so a is a unit. Since all non-zero elements are units, we have a field.

Note where we needed the finiteness of R in order to drive the proof. The obvious counter-example
of R = Z shows that an infinite integral domain need not be a field. Indeed, in such a case, the
function f : Z→ Z : x 7→ ax is injective, but is only surjective when a = ±1 is a unit.

Corollary 19.6. Zn is an integral domain if and only if n is prime. Indeed a ∈ Zn is a zero-divisor if and only
if gcd(a, n) 6= 1.

Factorizing polynomials

One of the upshots of this discussion is that one can factorize polynomials normally, even when
working in Zn, but only if n is prime! We shall return to a formal discussion of polynomial rings later.
For now, consider an example where F = Z7.

Given 3x3 − 3x2 + x − 1 = 0 ∈ Z7, we start by trying solutions. Quickly we see that x = 1 works.
Factorizing by x− 1 we obtain

3x3 − 3x2 + x− 1 = (x− 1)(3x2 + 1)

10R need not be an integral domain, it could be non-commutative and might have no unity.
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Keeping going: x = 3 solves 3x2 + 1 = 0, whence

3x3 − 3x2 + x− 1 = (x− 1)(x− 3)(3x + 9) = 3(x− 1)(x− 3)(x + 3)

We’ve obtained a complete factorization. Even though we found this by guessing solutions, the fact
thar Z7 is an integral domain means that the only solutions arise from one of these factors being zero:
the solutions are precisely x = 1, 3, 4 ∈ Z7.

Of course, we could simply have tried every element of Z7, so the method isn’t very efficient when
the ring is small.

What about solving equations in Zn when n is composite? If n = pµ1
1 · · · p

µk
k is the unique prime

decomposition, then

f (x) ≡ 0 mod n ⇐⇒ ∀i, f (x) ≡ 0 mod pµi
i =⇒ ∀i, f (x) ≡ 0 mod pi

We can therefore start by breaking things up into individual primes. For example, to solve

x3 + x2 − 2 = 0 ∈ Z18

we first solve in Z2 and Z3. Thus

x3 + x2 = x2(x + 1) = 0 =⇒ x = 0, 1 ∈ Z2

and

x3 + x2 − 2 = (x− 1)(x2 + 2x + 2) = 0 =⇒ x = 1 ∈ Z3

Now extend to Z9: by the previous calculation we try x = 1, 4 and 7, of which only x = 1 works. It
follows that x = 0, 1 ∈ Z2 and x = 1 ∈ Z9. Together these yield the solutions x = 1, 10 ∈ Z18.

Characteristics

Definition 19.7. Let R be a ring. Its characteristic char(R) is the smallest positive integer n such that

∀a ∈ R, n · a = a + · · ·+ a︸ ︷︷ ︸
n times

= 0

If no such n exists, we say the ring has characteristic zero.

Examples

1. It should be clear that char(Zn) = n. Certainly

∀a, n · a = na = 0 ∈ Zn

Moreover, n is the least such number, since k · 1 = 0 ⇐⇒ n | k.

2. In the infinite rings Z, Q, R, C we have k · 1 = k which is never zero, whence these rings have
characteristic zero.
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The focus on what happens to 1 really is the whole story (at least in rings with unity!).

Theorem 19.8. Suppose that R is a ring with unity. If n ∈N is the least number such that n · 1 = 0, then n
is the characteristic of R. Otherwise said, char(R) is the order of the cyclic subgroup 〈1〉 ≤ (R,+) generated
by 1.

Proof. Observe that

n · a = a + · · ·+ a = a(1 + · · ·+ 1) = a(n · 1)

Thus n · 1 = 0 ⇐⇒ n · a = 0 for all a ∈ R.

Further Examples of Characteristics

1. The characteristic of Z15 ×Z20 is the order of (1, 1): this is lcm(15, 20) = 60.

2. If R is a commutative ring with characteristic 3, then

(a + b)3 = a3 + 3 · a2b + 3 · ab2 + b3 = a3 + b3

3. Let R be a ring and M(R) be the set of 3× 3 matrices with entries in R and whose first column
is zero. This is a non-unital ring, even if R has a unity. Its characteristic is the same as that of R.

20 Fermat’s and Euler’s Theorems

Recall Theorem 18.7: If R is a ring with unity, then the set of units in R forms a group under multipli-
cation. Applying this to Zn recovers a famous discussion.

Definition 20.1. Let ϕ(n) = |Z×n | denote the order of the group of units in Zn. The function ϕ : N→
N is caller Euler’s totient function.

Theorem 20.2 (Euler’s Theorem). If a ∈ Z×n is a unit, then aϕ(n) ≡ 1 mod n.

Proof. By Lagrange’s Theorem, the order k of an element a divides the order of the group ϕ(n). Thus
k = ϕ(n)

d for some d. But then

aϕ(n) ≡
(

ak
)d
≡ 1d ≡ 1 mod n

This result is known as Fermat’s Little Theorem if n is prime (then Z×p has order ϕ(p) = p− 1). The
theorems of Fermat and Euler, and the function ϕ, have many applications, particularly in Number
Theory. Here are a few highlights.

Theorem 20.3 (Computing ϕ). 1. If p is prime, then ϕ(pk) = pk−1(p− 1) = pk
(

1− 1
p

)
.

2. Euler’s function is multiplicative: that is,

gcd(m, n) = 1 =⇒ ϕ(mn) = ϕ(m)ϕ(n)
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3. For any positive integer n ≥ 2,

ϕ(n) = n ∏
p|n

(
1− 1

p

)

Sketch Proof. 1. An element of Zpk is relatively prime to pk if and only if it is not divisible by p.
The remainders divisible by p all have the form

sp where s ∈ {0, 1, 2, . . . , pk−1 − 1}

In particular, there are pk−1 remainders divisible by p, and so ϕ(pk) = pk − pk−1 remainders
which are not.

2. Take a course in number theory if you want to see a full argument for this! Here is an easy
special case. Suppose p 6= q are distinct primes. If x ∈ Zpq is non-zero, then gcd(x, pq) = 1, p
or q. It should be clear that

gcd(x, pq) = p ⇐⇒ x = sp where s ∈ {1, 2, . . . , q− 1} and,
gcd(x, pq) = q ⇐⇒ x = tq where t ∈ {1, 2, . . . , p− 1}

and that there is no overlap between these lists. Since 0 ∈ Zpq is not a unit, it follows that the
number of non-units in Zpq is

ϕ(pq) = pq− p− q + 1 = (p− 1)(q− 1)

3. This follows immediately from 1 and 2: given the unique prime factorization

n = pµ1
1 · · · p

µk
k =⇒ ϕ(n) =

k

∏
i=1

ϕ(pµi
i ) =

k

∏
i=1

pµi
i

(
1− 1

pi

)
= n ∏

p|n

(
1− 1

p

)

Example: computing large powers To compute 1972018 ∈ Z200, note first that ϕ(200) = 200 · 1
2 ·

4
5 =

80 and that gcd(197, 200) = 1, so that 197 is a unit. But then Euler’s Theorem tells us that

1972018 = 19780·25+18 = (19780)25 · 19718 = 318

A little computation shows that 33 = 27, 36 = 129, 312 = 41, 318 = 89 whence 1972018 = 89 ∈ Z200.

Example: solving congruences To solve a congruence such as x7 ≡ 5 mod 33 we could laboriously
check for every value of x ∈ Z33. Instead, suppose a solution x exists and let d = gcd(x, 33). Then
d | x7, and so d | 5. But this means that d is a common divisor of 5 and 33: d must be 1! It follows that
any possible solution is a unit.
To apply Euler’s Theorem requires a little trick: we want to raise both sides of the original equation
to a power u such that 7u ≡ 1 mod ϕ(33). That is,

7u ≡ 1 mod 20 =⇒ 21u ≡ 3 mod 20 =⇒ u ≡ 3 mod 20

Now apply Euler’s Theorem:

x7 ≡ 5 =⇒ x21 ≡ 53 =⇒ x ≡ 53 ≡ 25 · 5 ≡ −8 · 5 ≡ 26 mod 33

14



The structure of the group of units: non-examinable/open-book

The group of units in the ring Zn is somewhat complicated: in general it can be quite difficult to
identify the group structure. We do have the following result, which we state without proof.

Theorem 20.4. Z×n is cyclic if and only if n = 2, 4, pk or 2pk where p is an odd prime.

Definition 20.5. If Z×n is cyclic, any generator is termed a primitive root modulo n.

Corollary 20.6. If g is a primitive root modulo n, then gs is a primitive root if and only if gcd(ϕ(n), s) = 1.
In particular, there are ϕ(ϕ(n)) primitive roots.

Proof. This is immediate from our knowledge of subgroups of cyclic groups. If g is a primitive root
modulo n, then Z×n = 〈g〉. The cyclic subgroup 〈gs〉 has order ϕ(n)

gcd(ϕ(n),s) .

Examples

1. n = 14 has a primitive root, namely g = 3. We check

〈3〉 = {3, 9, 13, 11, 5, 1} = Z×14

There are ϕ(ϕ(14)) = ϕ(6) = 2 primitive roots, the other being 5. The group of units is isomor-
phic to Z6.

2. Z×8 = {1, 3, 5, 7} is not cyclic. Since every element is its own inverse, we conclude that Z×8
∼=

Z2 ×Z2 is isomorphic to the Klein 4-group.

Finally, recall Corollary 18.10, if gcd(m, n) = 1, then Zmn ∼= Zm ×Zn is a ring isomorphism and so
units correspond. Moreover (x, y) ∈ Zm ×Zn is a unit if and only if x ∈ Z×m and y ∈ Z×n (its inverse
is (x, y)−1 = (x−1, y−1). We can easily generalize:

Corollary 20.7. If n = pµ1
1 × · · · × pµk

k is the unique prime factorization of n, then

Zn ∼= Zpµ1
1
× · · · ×Zp

µk
k

is a ring isomorphism and

Z×n
∼= Z×

pµ1
1
× · · · ×Z×

p
µk
k

is a group isomorphism.

Example Z×65 has order ϕ(65) = 65 · 4
5 ·

12
13 = 48. By the Corollary,

Z×65 = Z×5·13
∼= Z×5 ×Z×13

∼= Z4 ×Z12

since both 5 and 13 are prime.
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21 The Field of Quotients of an Integral Domain

A field is the closest one can get to having a set (F,+, ·) which is an abelian group with respect to
two distinct distributing operations: we always have to exclude at least 0 from the multiplicative group
structure. Fields, and the ability to divide, are so useful that it is helpful to be able to embed any
integral domain in a field. Essentially we wish to do the following:

Given an integral domain D, find the smallest field F such that D is isomorphic to a subdo-
main of F.

Here is the approach whereby we construct Q from Z. This is lengthy, but worth the read!

1. Define a relation ∼ on S := Z× (Z \ {0}) by

(a, b) ∼ (c, d) ⇐⇒ ad = bc

2. Prove that ∼ is an equivalence relation on S:

Reflexivity ∀(a, b) ∈ S, ab = ba =⇒ (a, b) ∼ (a, b).
Symmetry ∀(a, b), (c, d) ∈ S,

(a, b) ∼ (c, d) =⇒ ad = bc =⇒ cb = da =⇒ (c, d) ∼ (a, b)

Transitivity ∀(a, b), (c, d), (e, f ) ∈ S,

(a, b) ∼ (c, d) and (c, d) ∼ (e, f ) =⇒ ad = bc and c f = de
=⇒ adc f = bcde =⇒ cd(a f − be) = 0
=⇒ c(a f − be) (since d ∈ Z \ {0})
=⇒ c = 0 or a f = be
=⇒ c = 0 or (a, b) ∼ (e, f )

However, if c = 0, then a = 0 = e (since d 6= 0), in which case a f = be and we still have
(a, b) ∼ (e, f ).

3. Define Q = S
/
∼

= {[(a, b)] : (a, b) ∈ S} to be the set of equivalence classes of ∼ in S. We claim

that Q inherits a field structure from Z in a natural way. Define operations + and · on Q by

[(a, b)] + [(c, d)] := [(ad + bc, bd)], [(a, b)] · [(c, d)] := [(ac, bd)]

• These are well-defined operations: if (a, b) ∼ (p, q) and (c, d) ∼ (r, s), then aq = bp and
cs = dr. But then

[(p, q)] + [(r, s)] = [(ps + qr, qs)]

However,

(ad + bc)qs− bd(ps + qr) = (aq− bp)ds + (cs− dr)bq = 0
=⇒ [(p, q)] + [(r, s)] = [(a, b)] + [(c, d)]

Similarly,

acqs− bdpr = aqcs− aqcs = 0 =⇒ [(p, q)] · [(r, s)] = [(a, b)] · [(c, d)]

It follows that Q is closed under both operations.
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• The operations are associative. This is tedious: it suffices to observe that

[(a, b)] + [(c, d)] + [(e, f )] = [(ad f + bc f + bde, bd f )] and,
[(a, b)] · [(c, d)] · [(e, f )] = [(ace, bd f )]

regardless of which operation one computes first.

• The operations are commutative: this is immediate by inspection.

• Both operations have identities:

0Q = [(0, 1)], 1Q = [(1, 1)]

• Both operations have inverses:

−[(a, b)] = [(−a, b)], [(c, d)]−1 = [(d, c)] (provided [(c, d)] 6= 0Q)

• The distributive laws hold: for instance,(
[(a, b)] + [(c, d)]

)
· [(e, f )] = [(ad + bc, bd)] · [(e, f )]

= [(ade + bce, bd f )] = [(ade f + bce f , bd f 2)]

= [(ae, b f )] + [(ce, d f )]
= [(a, b) · [(e, f )] + [(c, d)] · [(e, f )]

The other is similar.

The upshot is that we’ve defined a field (Q,+, ·). Of course it is customary to write a
b = [(a, b)]

so that the addition and multiplication operations become the familiar expressions

a
b
+

c
d
=

ad + bc
bd

and
a
b
· c

d
=

ac
bd

but we keep the old notation just a while longer. . .

4. Observe that the subring Ẑ := {[(a, 1)] : a ∈ Z} is isomorphic to Z. For this, define the function

µ : Z→ Ẑ : a 7→ [(a, 1)]

and check that µ is an isomorphism of rings.

Bijectivity µ is certainly surjective by definition. Moreover,

µ(a) = µ(b) =⇒ (a, 1) ∼ (b, 1) =⇒ a · 1 = 1 · b =⇒ a = b

whence µ is injective.

Homomorphism It is easy to check that

µ(a + b) = [(a + b, 1)] = [(a, 1)] + [(b, 1)] = µ(a) + µ(b)
µ(ab) = [(ab, 1)] = [(a, 1)] · [(b, 1)] = µ(a) · µ(b)

The result is that we’ve defined a field Q containing an isomorphic copy of the integral domain Z.
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Generalizing So far, so exciting: we’ve laboriously defined and checked the consistency of an object
Q with which we’ve been working for years. The next observation is crucial: check every step of the
argument:

To construct Q, all we required was that Z be an integral domain!

The lack of zero-divisors is required to prove the transitivity of ∼ while the fact that Z is a commu-
tative ring is needed repeatedly.11 The upshot is that we can repeat the construction for any integral
domain.

Definition 21.1. Let D be an integral domain. Define the equivalence relation∼ on S = D× (D \ {0})
by

(a, b) ∼ (c, d) ⇐⇒ ad = bc

The field of quotients Frac(D) of D is the field S
/
∼

with operations

[(a, b)] + [(c, d)] := [(ad + bc, bd)], [(a, b)] · [(c, d)] := [(ac, bd)]

The notation is unwieldy, but before we can make everything simpler we need to prove perform one
piece of housekeeping.

Theorem 21.2. 1. Everything in the definition is as claimed: ∼ is an equivalence relation, the operations
are well-defined and Frac(D) really is a field.

2. The subring

R = {[(a, 1)] : a ∈ D}

is ring-isomorphic to D.

3. If L is any field containing D as a subring, then there exists a function ψ : Frac(D)→ L such that

(a) ψ is an isomorphism of Frac(D) onto a subfield of L,

(b) ∀a ∈ D, ψ([(a, 1)]) = a.

Remarks and Notation

• We’ve proved parts 1 and 2 in the above discussion: simply replace Z with D, Q with Frac(D)
and Ẑ with R.

• Atfer completing the proof, we will typically write ab−1 for the element [(a, b)] ∈ Frac(D).
Under this identification, we see that a = [(a, 1)] for every a ∈ D, whence parts 2. and 3.
become R = D and ψ(a) = a.

11It might appear that the existence of the unity 1 ∈ Z is required to define 0Q, 1Q and to identify Ẑ ≤ Q, but these can
be done via

0Q := [(0, b)], 1Q := [(b, b)], Ẑ = {[(ab, b) : a ∈ Z}

where b is any non-zero integer. The construction is therefore valid in any commutative ring with no zero-divisors.
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Proof of 3. Wtart by defining ψ. Since D ≤ L, we see that every non-zero element of D is invertible in the
field L. It follows that we can define

ψ([(a, b)]) = ab−1

where ab−1 is computed in L. Now observe that

[(a, b)] = [(c, d)] ⇐⇒ (a, b) ∼ (c, d) ⇐⇒ ad = bc

⇐⇒ ab−1 = b−1a = cd−1

⇐⇒ ψ([(a, b)]) = ψ([(c, d)])

whence ψ is well-defined and injective. We also clearly have ψ([(a, 1)]) = a ∈ L. Moreover,

ψ([(a, b)] + ψ([(c, d)]) = ab−1 + cd−1 = (ad + bc)(bd)−1 = ψ([(a, b)] + [(c, d)])

and

ψ([(a, b)] · ψ([(c, d)]) = ab−1cd−1 = (ac)(bd)−1 = ψ([(a, b)] · [(c, d)])

whence ψ is an isomorphism onto its image.

The third part of the theorem is hugely important: it says that Frac(D) is the smallest field containing
D in the sense that every field containing D must contain an isomorphic copy of Frac(D).

Examples

1. Suppose that D is already a field (this is automatic if D is a finite integral domain). Revisit the
construction:

(a, b) ∼ (c, d) ⇐⇒ ad = bc ⇐⇒ ab−1 = cd−1 in D!

It follows that the field of quotients is (isomorphic to) D itself.

2. Consider the integral domain Z[
√

2] = {a + b
√

2 : a, b ∈ Z}. Its field of quotients consists of
all elements

a + b
√

2
c + d

√
2
=

(a + b
√

2)(c− d
√

2)
c2 − 2d2 =

(ac− 2bd) + (bc− ad)
√

2
c2 − 2d2

so that we obtain the field12

Q(
√

2) := {p + q
√

2 : p, q ∈ Q}

12One can easily obtain any element of Q(
√

2) by setting d = 0 and taking c to be the least common multiple of the
denominators of p, q.
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