26 Homomorphisms, Ideals and Factor Rings

A historical example

You've almost certainly pondered, or been asked, the question, “What is i?” This is not easy to
answer, especially once you consider some history. In the 1500’s, Italian mathematicians such as
Cardano posited the existence of an object, now called i, which ‘solved’ the equation x> = —1. Even
to Cardano and his contemporaries this was an absurdity: they didn’t believe that such solutions
meant anything. Rather it was an early example of doing math for the sake of math: they simply
applied the basic rules of algebra and computed, so that, for example,

(2i +1)>—2(2i+1)+5=0

Using such algebra, they found formulas for solving all quadratic, cubic and quartic polynomial
equations. Over the centuries, the uses of complex numbers expanded, from early 2D analytic geom-
etry to the multitude of modern engineering applications. However, to many mathematicians, the
essential problem remained. The applications brought us no closer to understanding what i is. To
modern mathematicians, it isn’t good enough simply to pull i out of thin air: we want to construct it,
and the complex numbers in a natural way, as befits their highly useful status.

The modern approach to this problem uses our rings of polynomials. Rather than solving the equa-

tion x> = —1, we define an equivalence relation on the ring of polynomials R[x] so that x* ~ —1.

Then, almost tautologically, the equivalence class of x itself ‘solves’” the equation! Here is the rough
idea:

* To force x> ~ —1, we define f ~ ¢ <= (x> +1) | (f(x) — g(x)). Otherwise said, f and g lie
in the same coset of the subring (x? + 1) < R[x] of multiples of x* + 1.

o The set of cosets R[] / (32 41) naturally has the structure of a ring (indeed a field in this case).
¢ The evaluation homomorphism
: R{x : 2
berin R > KOS o s f0) o et (2 41))

maps the polynomial x2 + 1 to the zero coset in the factor ring. We’ve therefore constructed a
field R[]
new fie / <x2 n 1>

e The complex numbers C can now be defined as this new field, and i as the coset x + (x? + 1)!

which contains a zero of the polynomial x2+1.

To be sure, there are many details to iron out before the above is watertight, but take a deep breath
anyway for this is a triumph of mathematics. We’ve done what Cardano et al could not and explicitly
constructed C and i in a purely algebraic manner. The next time someone asks you, “What is i?”, you
now know what to say
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“i is the coset of x in the factor ring R [x] / < 2, 1>.
X

1If you want to lose friends, deliver this line with an air of smugness. If you don’t yet think this is astounding, keep
reading: eventually you'll learn to drink the kool-aid :)



Our primary purpose in this course is to make this discussion solid in the general context of a poly-
nomial f over an arbitrary field IF. We start by considering. ..
Factor Rings

Recall the concept of a factor group: If N is a normal subgroup of G then the set of left cosets

G/N:{xN:xeG}
forms a group under the natural operation

xN -yN := (xy)N (%)
In group theory, we discovered the following;:

N is a normal subgroup <= The operation (x) is well-defined

<= There exists a homomorphism ¢ for which ker ¢ = N
We moreover observed the 1% isomorphism theorem G / Ker ¢ = Im¢.
er

Our first goal is to replicate the above discussion for factor rings and to recognize the relationship be-
tween kernels of homomorphisms and the ideal subrings which play the ring-theoretic role of normal
subgroups. Here is an easy example before we construct everything abstractly.

Example Consider the subring 4Z < Z. We already know how to find the cosets of 4Z from group
theory: indeed 47 is a normal subgroup of Z and we have the factor group

(2, +)/ = (47,1 +4Z +1,2+ 42,3+ 42} = {[0], (1], 2], [3]}

(47, +)

Since Z is abelian, the factor group is also abelian (indeed it is isomorphic to (Z4, +)). In fact we also
have a natural ring structure: define

(x+4Z)(y +42Z) := xy + 4Z alternatively [x] - [y] := [xy]
It should be clear that this multiplication is well-definedﬂ

[x +4a] - [y + 4b] = [xy + 4(ay + bx + 4ab) = [xy]
and that Z / 47 is therefore naturally ring—isomorphi to Z.

Finally note that the function ¢ : Z — Z : x — [x] is a ring-homomorphism which satisfies

47
p(x) =[0] < xc4Z

Otherwise said, the subring 4Z is the kernel of the homomorphism ¢.

2This requires the important fact that xz,zx € 4Z for every x € Z and z € 4Z: the subring 4Z is absorptive under
multiplication. This is a stronger condition than merely being a normal subgroup and is what we shall mean by an ideal
subring.

3This is really the definition of Z, as a ring!



Homomorphisms

We quickly refresh the notion of a homomorphism of rings. Most of this is a rapid rehash of results
from group theory with which you should already be comfortable.

Definition 26.1. Let R, S be rings. A function ¢ : R — S is a homomorphism if
Yoy R, Pplx+y)=¢x)+¢(y) and ¢(xy) = ¢(x)p(y)

The kernel of ¢ is the set
kerg = ¢~1(0) = {x € R: ¢(x) = 0}

If T is a subring of R (or subset more generally), its image is
¢(T) = {p(x) :x € T}

The image or range of ¢ is Im ¢ = ¢(R).
A homomorphism is an isomorphism if it is also bijective.

Theorem 26.2 (Basic facts). Let ¢ : R — S be a ring homomorphism.
1. ¢: (R, +) — (S, +) is a homomorphism of groups. In particular,
$(0r) =05 and Vx € R, p(—x) = —¢p(x)
ker ¢ is a subring of R
¢ is injective if and only if ker ¢ = {0}
If T is a (commutative) subring of R, then ¢(T) is a (commutative) subring of S

If R has a unity 1g, then ¢(1g) is a unity for the image ¢(R)

S ks LN

If u € R* is a unit then ¢p(u) € ¢p(R)* is a unit. In such a case, p(u=') = [¢p(u)] 1. We can reverse
the implication if ¢ is injective.

We omit the proofs: you should write all these out as easy exercises!

Examples

1. Let ¢ : Z — Zj7 be the ring homomorphism defined by ¢(x) = x mod 7. Clearly ker ¢ = 7Z
is a subring of Z.

2. LetR = { (Z _ab) 1a,be IR}. You should check that

. a —b
4>.C—>R.a—|—bz'—><b a)

is an isomorphism of fields. Being injective, its kernel is {0} < C. The unity of R is the identity
matrix, clearly equal to ¢(1).



Cosets and Factor Groups

Definition 26.3. Let R be a ring and suppose that N is a subring. Let a € R. The coset of N containing
a is the set

a+N={a+h:heN}

Note that left- and right-cosets are always equal since (R, +) is abelian, whence (N, +) is always a
normal subgroup of (R, +).

The following should be easy to recall from group theory: prove it yourself if you've forgotten!

Lemma264. a+ N =b+ N <= a—bc N. Moreover, ~ defined by
a~b < a—-beN
is an equivalence relation on N.

As in group theory, our goal is to define a natural ring structure on the set of cosets

R/N ::R/N:{x—i—N:xeR}

where H is a subring of R. Since (R, +) is abelian we know that (N, +) is a normal subgroup of
(R, +) whence the operation of addition of cosets

(a+N)+(b+N):=(a+b)+N

is well-defined. Our attention turns to multiplication. We require the well-definition of
(a+N)-(b+N):=ab+ N

This is if and only if Va,b € R, Vm,n € N,

(a+m)(b+n)+N=ab+H <= (ab+mb+an+mn)—abe N
<= mb+an € N

In particular we require:
Left-absorption: Ya € R, n € Nwehavean € N (letb=m =e € N)
Right-absorption: Vb € R, m € Nwehavemb € N (leta=n=e¢ € N)
We formalize this notion.
Definition 26.5. A subringl-ﬂ N < Ris an ideal of R if it is left- and right-absorptive:
VxeR, ye N, xyec Nandyx € N

We can summarize everything in a single result.

41t is enough to assume that (N, +) is a subgroup of (R, +) with the absorptive properties: N is then automatically a
subring of R, since absorption implies closure under multiplication.
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Theorem 26.6. Let N be a subring of R. The natural structure (R / N +, ) is a well-defined ring if and only
if N is an ideal.

Proof. The above discussion shows that the natural operations are well-defined if and only if N is an
ideal. It remains to check the ring axioms.

Since (N, +) < (R, +) it follows that R ,+ ) is an abelian factor group.
N group

Certainly (R / Nt ) is associative due to the associativity of (R, -):

(x+N)((y+N)(z+N))=---=xyz+N=---=((x+N)(y+N))(z+N)
Finally, the distributivity laws carry over from R. For instance,

(x+N)((y+N)+(z+N))=(x+N)(y+z+N)=x(y+z)+ N
= (xy+xz)+N=(xy+N)+ (xz+ N)
=(x+N)(y+N)+(x+N)(z+N)

Examples

1. In the integers, the subring nZ of all multiples of n is an ideal. Indeed
Vx € Z,ny € nZ wehave x-ny=ny-x=nxyc nZ
It follows that £ / 17 is a factor ring. Indeed this is the natural definition of the ring Z,.
2. In the ring R[x] of polynomials with real coefficients, the set
(x* +1) = {(x" + Dp(x) : p(x) € Rx]}
is an ideal whence we obtain the factor ring Rx] / (2 +1) from our motivational example.

We'll revisit both these examples in more detail, and see many more examples, later.

Kernels and Ideals: the Fundamental Homomorphism Theorem

The primary result to which we are building is the ring-theoretic version of the first isomorphism
theorem. The basic idea is that a subring is an ideal if and only if it is the kernel of some ring homo-
morphism.

First consider the cosets of a kernel: if ¢ : R — S is a homomorphism then
beatkerp <= b—ackerp < ¢p(b—a)=0 <= ¢(a) = ¢(b)
Otherwise said, the subring ker ¢ = ¢~1(0) has cosets
a+kerg=¢ '[p(a)] = {x € R: ¢p(x) = ¢(a)}

Distinct cosets thus correspond precisely to distinct elements in the image of ¢...
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Theorem 26.7 (Fundamental Homomorphism Theorem). Every kernel of a homomorphism is an ideal
and vice versa. Specifically:

1. Let ¢ : R — S be a homomorphism of rings. Then ker ¢ is an ideal of R and

R/ ker ¢

via the isomorphism p(x + ker ¢) := ¢(x).

12

Im¢

2. Let N be an ideal of R. Then y(x) = x + N defines a surjective ring—homomorphis 7Y:R = R / N
with ker y = N.

Proof. We already know that all group-theoretic parts of the Theorem hold: ¢ is a group homomor-
phism, ker ¢ is a normal subgroup of (R, +), etc. We therefore check only the parts which are new
for rings.

1. Letx € Rand y € ker ¢. Then
¢(xy) = ¢(x)p(y) =0 = xy € ker¢

Similarly yx € ker ¢, whence ker ¢ is an ideal of R.
We check that y is a multiplicative homomorphism:

y((x +ker¢)(z + ker4))) = u(xz +ker¢p) = ¢(xz)
= ¢(x)¢(2) = p(x +ker p)pu(z + ker ¢)

2. We check that v is a multiplicative homomorphism:

Y(xy) =xy+N = (x+N)(y+ N) =v(x)7(y) .

Example v :Z — Z, : x — x mod n is a homomorphism with kernel nZ. If we take the definition
of Z, to be the factor ring 74 / W7 then v is precisely the canonical homomorphism in part 2. of the

Fundamental Theorem.

Back to the past: ‘solving’ x> +1 =0
We now have enough machinery to properly work our motivating example.
e N:= (x?+1)isanideal in the ring R[x].
e If f € R[x] has degree > 2, we may apply the division algorithm to compute

f(x) = (x> +1)g(x) +r(x) where deg(r) <1

f and r clearly have the same coset in the factor ring R(x] / N We conclude that in each coset

there is a unique representative r(x) of degree < 1.

59 is known as the canonical or fundamental homomorphism.



¢ The factor ring operations are easy for these representatives:
(a+bx+N)+ (c+dx+N)=(a+c)+ (b+d)x+N
and
(a+bx+N)(c+dx+N) =ac+ (ad + bc)x + bdx* + N
= (ac — bd) + (ad + bc)x + N (since x> + N = —1+ N)
If a and b are not both 0, we quickly see that

_a b
a2+ a2+

whence the factor ring is a field. The addition and multiplication are precisely what we expect

x+ N

(a+bx+N)!

to see for the complex numbers, so this could be taken as a definition: C := = Rix] / (x2 +1)
x

* The evaluation homomorphism ¢, , 21y : R[x] — R[x] / (2 +1) returns

Priperny (P 1) =2+ 14 (x> +1) = (x> +1)

precisely the zero in the quotient ring! Otherwise said, the coset x + (x? + 1) is a zero of x? + 1
and thus plays the role of i € C.

For the algebraic purist, we need no more than the above: C is the factor ring, and i is the coset of
x. This doesn’t feel satisfying to most of us, particularly when we’ve been working with C and i
for years. Instead, therefore, let us suppose that we were already in possession of some other nice
definition of these concepts. Consider the evaluation homomorphism

¢i i R[x] = C: f(x) = f(i)

We compute its kernel: if f(i) = 0, then 0 = f(i) = f(i) = f(—i), since the coefficients of f are real
numbers. But then, by the factor theorem in Clx], the polynomial f(x) is divisible by the product
(x —i)(x +1i) = x2 + 1. It follows that

ker¢; = (x* +1)

Moreover, ¢; is surjective, since a + ib = ¢;(a + bx). The[Fundamental Homomorphism Theorem|then
says that

lR[X]/<x2 +1) B ]R[x]/keﬂl?i R

via the isomorphism

wif(x)+(F+1) = f(i)

More explicitly, using the unique deg < 1 representative of each coset, we have

y(u+bx—|—<x2—|—1>) =a+ib

In essence, the Fundamental Homomorphism Theorem says that whatever alternative definition or
visualization you might have of C, it is isomorphic to ours. Whew!
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27 Prime and Maximal Ideals

The previous discussion of the algebraic construction of C is fairly easily generalizable. For instance,

(p(x))

We’d like to know when this factor ring is a field, without performing an explicit calculation. In order
to answer this question, and others, we consider various types of ideals that might be possessed by a
given ring and consider several further examples.

Definition 27.1. Let N be an ideal of ring R.
e Nis trivial if N = {0}.

given a polynomial p(x) € F[x] over some field F, we may construct the factor ring IFx] /

* Nis proper if N # R. We might write N < R in this case.

* A proper ideal N is maximal if there is no proper ideal which properly contains N. Otherwise
said, if M is an ideal such that N < M < R, then N = M.

* Suppose R is commutativeﬁ A proper ideal N is prime if
xye¢ N =— xeNorye N
* Suppose R is unital and commutative. An ideal N is principal if there exists x € R such that
N = {rx :r € R}. We write N = (x): this is the principal ideal generated by x.

Principal ideals are, arguably, the simplest type of ideal: like cyclic groups, they are generated by a
single element. It is easy to check that (x) is indeed an ideal:

e 0=0x¢€ (x)
e Vr,se€R, rx—sx = (r—s)x € (x)
* Vr,s € R, r(sx) = (rs)x = (sx)r € (x)

The third argument shows both the closure of (x) under multiplication (thus (x) < R) and the absorp-
tion properties. Note how the commutativity of R justifies the right-absorption property. The notion
of principal ideal becomes more difficult for non-commutative rings, so we ignore it. We require a
unital ring mainly so that x € (x)!

A given ideal can satisfy several of these criteria simultaneously! We’ll consider our main examples
of interest (the rings Z, Z,, and F|[x]) more fully shortly; first here are some other examples.

Examples

1. Every ring R has at least two ideals: R itself and the trivial ideal {0}. These lead to the rather
uninteresting factor rings

R/R ~ {0} and R/{o} ~ R

Certainly {0} = (0) is always a principal ideal in any ring. Moreover, if R has a unity, then
R = (1) is also principal. If F is a field, then its only ideals are itself and the trivial ideal.

éPrime ideals can be defined for non-commutative rings, but they are more subtle and beyond our current concern.



2. The Gaussian integers Z[i] = {x + iy : x,y € Z} have many ideals. In fact it can be shown that
all these are principal: for example

B—i)={(x+iy)B—i)=Bx+y)+ By —x)i:xycZ}
We can play similar games in other rings such as Z[v/2].

3. Finding examples of non-principal ideals of commutative unital rings is a little tricky. Here are
two standard examples:

(a) In the ring Z[x] of polynomials, the subring of polynomials of the form
ao—l—a1x+a2x2+--- : ag is even

is a non-principal ideal.

(b) In the ring R[x, y] of polynomials in two indeterminates, the subring generated by x and y
is a non-principal ideal: that is simply the subring of polynomials with zero constant term.

Ideal structure in Z

Principal ideals Every additive subgroup of Z is cyclic and thus has a generator n, which we may
assume is non-negative. It follows that the only subrings of Z are those rings (n) = nZ where
n € INo. We've already seen that these are all principal ideals, whence every ideal in Z is princi-

pal.

Prime ideals The ideal pZ is prime if and only if p € INg is prime or zero. To see this, first observe
that if p is prime, then

xyepZ = plxy = plxorp|ly = x€pZory € pZ

where the definition of p being prime is in red. The primality of the trivial ideal {0} is simpliy
the statement that Z is an integral domain.

If n > 2 is composite (n = ab where a,b > 2), then ab € nZ but neither a nor b lies in nZ.
Finally 1Z = Z is not proper and so isn’t prime.

Maximal ideals If n = ab then nZ € aZ. 1t follows that the maximal ideals in Z are precisely those
ideals pZ where p is prime: thus maximal == prime.

Factor Rings Since all ideals are principal, we’ve therefore found all the factor rings of Z.

7 ~ Z ifn=0
nZ \Z, ifn>0

The second case includes n = 1 with Z; = {0}. These can be viewed in the language of
the [Fundamental Homomorphism Theorem|via ¢(x) = x and ¢(x) = x mod n respectively.
Observe that the factor ring is a field if and only if nZ is a maximal ideal, and an integral
domain if and only if nZ is a prime ideal. In all cases the factor rings are commutative rings
with unity.




General Ideal Structure

Many of the observations made regarding the ideal structure of Z are true in general. The first result
should be obvious without proofﬂ

Lemma 27.2. Let R be a ring with ideal N.

1. If R is commutative, then R / N is commutative.
2. If R has a unity 1, then 1 + N is a unity in R/N' Moreover units correspond:

HER" — u+Ne (R/N)X

By considering the factor rings of Z, we shouldn’t expect any stronger structure (e.g., that of an
integral domain or field) to automatically carry over to a factor ring. We can make several general
conclusions.

Theorem 27.3. Suppose R is a commutative ring with unity with ideals M and N. Then:
1. M is maximal <= R/M is a field.

2. Nisprime <= R/N is an integral domain.

3. M maximal = M prime.

Proof. 1. Suppose M is a proper ideal of R with resulting factor ring R / M

(=) If the factor ring is not a field, then 32 € R\ M such that a + M is not a unit. Define
N ={ra+m:r € R,m € M}. This is clearly a subring, indeed an ideal, of R. Since a + M
is not a unit we see that ra ¢ 1+ M for any r € R, whence 1 ¢ N. It follows that N is a
proper ideal of R and M is not maximal.

(<) Suppose M is not maximal. Then there exists an ideal N such that M < N < R. Suppose
that a € N\ M and consider the non-zero coset a + M € R / . If the coset were a unit,

then 3b € R such that ab € 1 + M. However, N is an ideal, whence ab € N. Since M < N
we conclude that 1 € N. But then R = (1) < N: a contradiction. Thus a + M is a non-zero

non-unit and so R / M is not a field.

2. Suppose N is a proper ideal of R with resulting factor ring R / N’ Then

R/N is not an integral domain <= 3a,b € R\ N with (a+ N)(b+N) =ab+ N = N

<= da,b ¢ Nwithabe N
<= N isnot prime.

3. M maximal <— R / M is a field = R / M is an integral domain <= M is prime.

|
"It is a good exercise to see how both parts of the lemma follow from our basic properties of homomorphisms (Theorem
26.2) and the[Fundamental Homomorphism Theorem |
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Ideal structure in Z,,

Principal ideals Every ideal is principal and has the form (d) where d | n. This is immediate from
the fact that all additive subgroups of Z,, have this form.

Prime ideals These include the ideals (p) < Z, where p is a prime divisor of n. The argument is
similar to that for the integers: suppose that p is a prime divisor of n, then

xy € (p) = xy = pk € Z,, forsomek € Z
= xy = pl, forsome ! € Z (since p | n)
= play = plxorply
= x € (p) ory € {p)

If m is a composite divisor of n, then Ja,b ¢ (m) such that ab = m € (m).
Additionally, it is possible that the trivial ideal (0) is prime, but only if Z, is an integral domain:
i.e. if n is itself prime!

Maximal ideals These are identical to the prime ideals: if 2 | b and b | n where b is a proper divisor
of n, then (b) < (a). If n is prime, then the only prime/maximal ideal is the trivial ideal {0}.

Factor rings Putting this together, we see that, for any divisor d | n,
Zu) ={d) 1+ {d),...d-1+{d)}=2Z
- ’ AR - d
/ {d)

The fact that Z, is a field if and only if 4 is prime fits with the description of the maximal ideals.
Moreover, if n = p is prime, then taking d = 0 trivially yields the field Z,.

Here are two concrete examples: first we take the ideals and factor rings of Z5:

e N= (1) =Zy,, and ZlZ/N = {Z1y} = Z, is trivial.
e N = (2) is prime/maximal, Zl2/<2> ={(2),1+(2)} = Z,isafield.

e N = (3) is prime/maximal, ZlZ/<3> ={(3),1+(3),2+ (3)} is a field.

N = (4) has le/<4> = Z,4 is not a field.

N = (6) has le/<6> = Zs is not a field.

N = (0) has ZlZ/ = Z,, is not a field.

{0)

Now consider the ideals/factor rings in Z;;. We have merely

Z17 _ 2y ~ Z17 ~
/<1> 217 = Zl and / = 217

{0}

In both cases this fits with the theorem.
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Ideals in FF[x]

Our primary interest is in factor rings of IF[x] where F is a field. First note something which should
be obvious: if f, g € F[x]|, then

flg < Jq€Fx]suchthatg =gqf <= g€ (f(x)) (%)
Theorem 27.4. Let [F be a field.
1. Every ideal of F[x] is principal.
2. The principal ideal (f(x)) is maximal if and only if f is irreducible. Otherwise said, F[x] / ) is a
field if and only if f is irreducible.
3. The principal ideal (f(x)) is prime if and only if f is prime.

Proof. 1. Suppose N < [F[x] is a non-trivial ideal (the trivial ideal is certainly principal!). Let g(x)
be any non-zero polynomial of minimal degree in N and let f(x) € N. Apply the division
algorithm:

fx) =q(x)g(x) +r(x), degr <degg

Clearly r(x) = f(x) —g(x)g(x) € N: by minimality, r(x) must be the zero polynomial. We
conclude that N = (g(x)) is principal.

2. If f(x) = g(x)h(x) is reducible over F, then f € (g(x)) = (f(x)) < (g(x)) whence (f(x)) is
not maximal.
Conversely, suppose (f(x)) is non maximal. Then, since every ideal is principal, there exists a
proper ideal (g(x)) < F[x] properly containing (f(x)). Clearly g | f. Moreover,

* gisaproper divisor of f, else f, g are associates and the ideals are equal!

e ¢isnota unit, else (g(x)) = F[x] is non-proper.
We conclude that f is reducible.

3. Compare the definitions:

fprime: f|gh = f|gorf|h
(f(x)) prime: gh € (f(x)) = g € (f(x)) orh € (f(x))

The left and right sides of these implications are equivalent by ().

Corollary 27.5. Theorems[27.3|and combine to show that, in x|, if f is irreducible then it is prime.
Since every prime is irreducible in an integral domain (of which F[x] is one), we see that the notions are
equivalent.

The Corollary allows us to prove the uniqueness part of the unique factorization theorem in IF|x]|
without invoking the Euclidean algorithm or ged’s of polynomials.
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Kronecker’s Theorem: victory!

We now have all the ingredients to complete our main purpose: this was first published by Leopold
Kronecker in 1881, though not in this language.

Theorem 27.6 (Kronecker). Suppose F is a field and f € F[x] is non-constant. Then there exists a field I|E
containing an isomorphic copy of IF and an element « € IE such that f(a) = 0.

Proof. Suppose f is irreducible. We may then define
. Flx]
E:=
/ (f(x))

Theorem 7.4 guarantees that E is a field, which moreover contains an isomorphic copy of
F 2 {a+(f(x)) :a € F}

We also see thatf]
fla) = ¢a(f(x)) = f(x) + (f(x)) = (f(x)) = Og

If f is reducible, we may repeat the above for any irreducible factor g of f. Clearly any zero of g is
also a zero of f.

and a:=x+ (f(x))

As a sanity check, you should convince yourself that if deg(f) = 1, then the field E in the proof is
isomorphic to [F itself!

Aside: Prime Fields; characteristics revisited

Theorem 27.7. Suppose R is a unital ring with char(R) = n. Then the set
S:={x-1:xe€2Z}

forms a subring of R isomorphic to Zy, or to Z if char(R) = 0.

Proof. Define ¢ : Z — R by ¢(x) = x - 1. This is easily seen to be a ring-homomorphism. But then
S = ¢(Z) is a subring of R. If char(R) = 0, then ker¢ = {0} whence ¢ is injective and S = Z. If
char(R) = n is positive, then ker ¢ = nZ, whence

J— EZ ~
S=e@)= nZ_Zn ]

Corollary 27.8. Recall that the characteristic of every field is either zero or a prime. If char(FF) = p, then F
contains a subfield isomorphic to Z,. If char(IF) = 0 then F contains a subfield isomorphic to Q.

Proof. By the Theorem, we certainly have a subring isomorphic to Z,, or Z. But then [F also contains

a subfield isomorphic to the field of fractions of said integral domain: namely Z, or Q. .

Definition 27.9. The fields Z, and Q are called prime fields: they form the building-blocks of all fields
in the sense that every field is a vector space over one of these. We shall explore this idea more later.

81f this is too quick, let f(x) = a,x" + - - - + ag so that
f(a) = ana” 4+ a9 = an(x + (f(x))" + - + a0 = anx" + - +ao+ (f(x)) = (f(x))
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Aside: an alternative proof of Theorem part 1.

A more sophisticated proof of the relationship between maximal ideals and fields can be given,
though it needs a few prerequisites. The crucial observation is that the canonical homomorphism
allows us to transfer the relationship between ideals from R to a quotient ring. You should compare
this proof with the original.

Let M be an ideal of R and consider the canonical homomorphism v : R — R / Mo + M. This

is surjective. Observe:

If N is an ideal of R, then the y(N) is an ideal of y(R) = R / M (by surjectivity).
e If N is an ideal of R/M' then v~ 1(N) = {r € R: 4(r) € N} is an ideal of R.
e Writing N = (N), we have a correspondence of ideals:

SR
< < < <
M_N_R<:>{M}_N_/
IndeedM:N<:>Nz{M}anszR(z}N:R/ .

* Now for the proof: if R / M is not a field, let 2 + M be any non-zero non-unit and define the

principal ideal N = (a + M). This is clearly proper (it doesn’t contain 1 + M) and non-trivial
(a ¢ M), whence N is a proper ideal of R properly containing M, which is not maximal.

Conversely, if M is not maximal, then 3N properly between M and R: construct N, a proper,

non-trivial ideal of K / M But then K / M is not a field, since the only ideals in a field are trivial
Or non-proper.

14



	Homomorphisms, Ideals and Factor Rings
	Prime and Maximal Ideals

