Math 120B Rings and Fields: Homework 1

Hand in questions 1, 2, 4, 5, 6, 7 \& 11(a,b) at discussion on Tuesday 9th October

1. (a) Let $R=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$. Is this a ring (with the usual addition and multiplication)? Is R commutative? Does it have a unity? Is R a field?
(b) Repeat the question for the set $\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$. What changes?
2. Consider the matrix ring $M_{2}\left(\mathbb{Z}_{2}\right)$. Find the number of elements in the ring (it's order), and describe all the units in the ring. To what elementary group is the set of units isomorphic?
3. Is the function $\phi: A \mapsto \operatorname{det} A$ a ring homomorphism $\phi: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$. Why/why not?
4. (a) Describe all the subrings of \mathbb{Z}_{6}.
(b) If possible, give an example of a homomorphism $\phi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ where $\phi(1) \neq 0$ and $\phi(1) \neq 1$.
(c) Give an example of a ring with unity $1 \neq 0$ that has a subring with non-zero unity $1^{\prime} \neq 1$.
(d) Prove that part (c) cannot happen with subfields: that is, if $G \leq F$ are fields, with $1_{G} \neq 0_{G}$, then $1_{G}=1_{F}$.
5. Describe all ring homomorphisms $\phi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$.
6. Let $\mathcal{F}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ be a ring of functions under the usual addition and multiplication. For any $a \in \mathbb{R}$, prove that the evaluation map $\phi_{a}: \mathcal{F} \rightarrow \mathbb{R}$ defined by $\phi_{a}(f)=f(a)$ is a homomorphism of rings.
7. Prove that $a^{2}-b^{2}=(a-b)(a+b)$ for all a, b in a ring R if and only if R is commutative.
8. Prove that the multiplicative inverse in a ring with unity is unique.
9. Prove that a subset S of a ring R is a subring if and only if:

- $0 \in S$,
- $\forall a, b \in S, a-b \in S$,
- $\forall a, b \in S, a b \in S$.

10. An element a in a ring R is nilpotent if $a^{n}=0$ for some $n \in \mathbb{N}$. Show that if R is commutative and a, b are nilpotent, so is $a+b$. Hint: use the binomial theorem...
11. An element a in a ring R is idempotent if $a^{2}=a$.
(a) Prove that the set of idempotents in a commutative ring is closed under multiplication.
(b) Find all idempotents in the ring $\mathbb{Z}_{6} \times \mathbb{Z}_{12}$.
(c) A ring is Boolean if every element is idempotent. Prove that every Boolean ring is commutative. Hint: consider $(a+b)^{2} \ldots$
(d) (Hard) Let \mathcal{U} be some set, and $\mathcal{P}(\mathcal{U})$ its power set. For any $A, B \in \mathcal{P}(\mathcal{U})$, define

$$
A+B:=(A \cup B) \backslash(A \cap B) \quad \text { and } \quad A \cdot B=A \cap B
$$

i. Give the addition and multiplication tables for $\mathcal{P}(\mathcal{U})$ when $\mathcal{U}=\{a, b\}$ has two elements. ($\mathcal{P}(\mathcal{U})$ has four elements!)
ii. For any set \mathcal{U}, prove that $\mathcal{P}(\mathcal{U})$ is a Boolean ring.

