Math 120B Rings and Fields: Homework 1

Hand in questions 1, 2, 4, 5, 6, 7 & 11(a,b) at discussion on Tuesday 9th October

- 1. (a) Let $R = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$. Is this a *ring* (with the usual addition and multiplication)? Is *R* commutative? Does it have a unity? Is *R* a field?
 - (b) Repeat the question for the set $\{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$. What changes?
- 2. Consider the matrix ring $M_2(\mathbb{Z}_2)$. Find the number of elements in the ring (it's *order*), and describe all the units in the ring. To what elementary group is the set of units isomorphic?
- 3. Is the function $\phi : A \mapsto \det A$ a ring homomorphism $\phi : M_n(\mathbb{R}) \to \mathbb{R}$. Why/why not?
- 4. (a) Describe *all* the subrings of \mathbb{Z}_6 .
 - (b) If possible, give an example of a homomorphism $\phi : \mathbb{Z}_6 \to \mathbb{Z}_6$ where $\phi(1) \neq 0$ and $\phi(1) \neq 1$.
 - (c) Give an example of a ring with unity $1 \neq 0$ that has a subring with non-zero unity $1' \neq 1$.
 - (d) Prove that part (c) cannot happen with subfields: that is, if $G \le F$ are fields, with $1_G \ne 0_G$, then $1_G = 1_F$.
- 5. Describe all ring homomorphisms $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$.
- 6. Let $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$ be a ring of functions under the usual addition and multiplication. For any $a \in \mathbb{R}$, prove that the *evaluation map* $\phi_a : \mathcal{F} \to \mathbb{R}$ defined by $\phi_a(f) = f(a)$ is a homomorphism of rings.
- 7. Prove that $a^2 b^2 = (a b)(a + b)$ for all *a*, *b* in a ring *R* if and only if *R* is commutative.
- 8. Prove that the multiplicative inverse in a ring with unity is unique.
- 9. Prove that a subset *S* of a ring *R* is a subring if and only if:
 - $0 \in S$,
 - $\forall a, b \in S, a b \in S$,
 - $\forall a, b \in S, ab \in S$.
- 10. An element *a* in a ring *R* is *nilpotent* if $a^n = 0$ for some $n \in \mathbb{N}$. Show that if *R* is *commutative* and *a*, *b* are nilpotent, so is a + b. *Hint: use the binomial theorem...*
- 11. An element *a* in a ring *R* is *idempotent* if $a^2 = a$.
 - (a) Prove that the set of idempotents in a commutative ring is closed under multiplication.
 - (b) Find all idempotents in the ring $\mathbb{Z}_6 \times \mathbb{Z}_{12}$.
 - (c) A ring is *Boolean* if every element is idempotent. Prove that every Boolean ring is commutative. *Hint: consider* $(a + b)^2 \dots$
 - (d) (Hard) Let \mathcal{U} be some set, and $\mathcal{P}(\mathcal{U})$ its power set. For any $A, B \in \mathcal{P}(\mathcal{U})$, define

 $A + B := (A \cup B) \setminus (A \cap B)$ and $A \cdot B = A \cap B$

- i. Give the addition and multiplication tables for $\mathcal{P}(\mathcal{U})$ when $\mathcal{U} = \{a, b\}$ has two elements. ($\mathcal{P}(\mathcal{U})$ has four elements!)
- ii. For any set \mathcal{U} , prove that $\mathcal{P}(\mathcal{U})$ is a Boolean ring.