Math 120B Rings and Fields: Homework 2

Hand in questions 1, 3, 6, 7, 9, 12 & 13 at discussion on Tuesday 16th October

- 1. The equation $x^3 2x^2 3x = 0$ in \mathbb{Z}_{12} has *six* solutions. Find them, and find all possible factorizations of the polynomial in \mathbb{Z}_{12} into monic linear factors of the form x a.
- 2. Find all solutions to the following equations:
 - (a) 3x = 2 in the field \mathbb{Z}_7 ; in the field \mathbb{Z}_{23} .
 - (b) $x^2 + 2x + 2 = 0$ in \mathbb{Z}_6
 - (c) $x^2 + 2x + 4 = 0$ in \mathbb{Z}_6
- 3. Find the characteristic of each ring:
 - (a) 2Z.
 - (b) $\mathbb{Z}_3 \times 3\mathbb{Z}$.
 - (c) $\mathbb{Z}_3 \times \mathbb{Z}_3$.
 - (d) $\mathbb{Z}_6 \times \mathbb{Z}_{15}$.
- 4. Let *R* be a commutative ring with unity and with characteristic 3. Compute and simplify the expression $(a + b)^9$ for any $a, b \in R$.
- 5. Recall that $a \in R$ is *idempotent* if $a^2 = a$. Show that a division ring contains exactly two idempotents.
- 6. Let *E* be a subdomain of an integral domain *D*: thus *E* is itself an integral domain with respect to the same operations as that on *D*.
 - (a) Prove that the characteristic of *E* is equal to that of *D*.
 - (b) Prove that $1_E = 1_D$.
 - (c) Prove that $\{n \cdot 1 : n \in \mathbb{Z}\}$ is a subdomain of *D* contained in every subdomain *E*.
- 7. Prove that the characteristic of an integral domain is either 0 or prime. (*Hint: consider* $(m \cdot 1)(n \cdot 1)$ *in D if the characteristic is* mn...)
- 8. The integers n = 7, 11 and 17 all have primitive roots (the groups of units $\mathbb{Z}_7^{\times}, \mathbb{Z}_{11}^{\times}$ and \mathbb{Z}_{17}^{\times} are all cyclic). Find a generator (primitive root) for each group.
- 9. Use Fermat's theorem to compute the remainder when 37^{49} is divided by 7.
- 10. Compute the remainder when $2^{2^{17}} + 1$ is divided by 19.
- 11. Use Euler's Theorem to compute 7^{1000} in \mathbb{Z}_{24} .
- 12. (a) Prove that if p is prime, then 1 and p 1 are the only elements of \mathbb{Z}_p that are their own inverses.
 - (b) Prove that $n \in \mathbb{N}_{\geq 2}$ is prime if and only if $(n-1)! \equiv -1 \mod n$.
- 13. Describe the structure of the group \mathbb{Z}_{20}^{\times} in the language of the Fundamental Theorem of Finitely Generated Abelian Groups: for a challenge, find an explicit isomorphism with your answer!