Math 120B Rings and Fields: Homework 2

Hand in questions $1,3,6,7,9,12 \& 13$ at discussion on Tuesday 16th October

1. The equation $x^{3}-2 x^{2}-3 x=0$ in \mathbb{Z}_{12} has six solutions. Find them, and find all possible factorizations of the polynomial in \mathbb{Z}_{12} into monic linear factors of the form $x-a$.
2. Find all solutions to the following equations:
(a) $3 x=2$ in the field \mathbb{Z}_{7}; in the field \mathbb{Z}_{23}.
(b) $x^{2}+2 x+2=0$ in \mathbb{Z}_{6}
(c) $x^{2}+2 x+4=0$ in \mathbb{Z}_{6}
3. Find the characteristic of each ring:
(a) $2 \mathbb{Z}$.
(b) $\mathbb{Z}_{3} \times 3 \mathbb{Z}$.
(c) $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
(d) $\mathbb{Z}_{6} \times \mathbb{Z}_{15}$.
4. Let R be a commutative ring with unity and with characteristic 3 . Compute and simplify the expression $(a+b)^{9}$ for any $a, b \in R$.
5. Recall that $a \in R$ is idempotent if $a^{2}=a$. Show that a division ring contains exactly two idempotents.
6. Let E be a subdomain of an integral domain D : thus E is itself an integral domain with respect to the same operations as that on D.
(a) Prove that the characteristic of E is equal to that of D.
(b) Prove that $1_{E}=1_{D}$.
(c) Prove that $\{n \cdot 1: n \in \mathbb{Z}\}$ is a subdomain of D contained in every subdomain E.
7. Prove that the characteristic of an integral domain is either 0 or prime.
(Hint: consider $(m \cdot 1)(n \cdot 1)$ in D if the characteristic is mn...)
8. The integers $n=7,11$ and 17 all have primitive roots (the groups of units $\mathbb{Z}_{7}^{\times}, \mathbb{Z}_{11}^{\times}$and \mathbb{Z}_{17}^{\times}are all cyclic). Find a generator (primitive root) for each group.
9. Use Fermat's theorem to compute the remainder when 37^{49} is divided by 7 .
10. Compute the remainder when $2^{2^{17}}+1$ is divided by 19 .
11. Use Euler's Theorem to compute 7^{1000} in \mathbb{Z}_{24}.
12. (a) Prove that if p is prime, then 1 and $p-1$ are the only elements of \mathbb{Z}_{p} that are their own inverses.
(b) Prove that $n \in \mathbb{N}_{\geq 2}$ is prime if and only if $(n-1)$! $\equiv-1 \bmod n$.
13. Describe the structure of the group \mathbb{Z}_{20}^{\times}in the language of the Fundamental Theorem of Finitely Generated Abelian Groups: for a challenge, find an explicit isomorphism with your answer!
