Math 120B Rings and Fields: Homework 3

Hand in questions $3(\mathrm{~b}), 5,6,8,11 \& 12$ at discussion on Tuesday 23rd October

1. Describe the field of fractions $\operatorname{Frac}(D)$ of the Gaussian integers

$$
D=\{x+i y: x, y \in \mathbb{Z}\}
$$

2. Let R be a commutative ring, and let T be a non-empty subset of R which is closed under multiplication and contains neither zero nor any zero-divisors. Define a relation on $R \times T$ by

$$
(a, b) \sim(c, d) \Longleftrightarrow a d=b c
$$

and define the operations,$+ \cdot$ as in the construction of the field of fractions of an integral domain. Convince yourself that we can follow the exact procedure to create a partial ring of quotients $Q(R, T)$. In particular, prove the following:
(a) $Q(R, T)$ has a unity, even if R does not.
(b) Every element of T is a unit in $Q(R, T)$.
3. Consider the previous exercise.
(a) How many elements are there in the ring $Q\left(\mathbb{Z}_{4},\{1,3\}\right)$? Is this ring a field? Why/why not?
(b) Describe the ring $Q\left(\mathbb{Z},\left\{2^{n}: n \in \mathbb{N}\right\}\right)$ by describing a subring of \mathbb{R} to which it is isomorphic. Find the units in this ring.
(c) Repeat part (b) for the ring $Q\left(3 \mathbb{Z},\left\{6^{n}: n \in \mathbb{N}\right\}\right)$.
4. Compute the sum and the product of the following polynomials in $\mathbb{Z}_{8}[x]$:

$$
f(x)=4 x-5 \quad g(x)=2 x^{2}-4 x+2
$$

5. (a) List all polynomials of degree ≤ 3 in $\mathbb{Z}_{2}[x]$ (include 0).
(b) How many polynomials of degree ≤ 2 are there in $\mathbb{Z}_{5}[x]$? Explain.
6. Compute the evaluation homomorphism $\phi_{\alpha}: \mathbb{Z}_{7}[x] \rightarrow \mathbb{Z}_{7}$ for each of the following:
(a) $\phi_{3}\left[\left(x^{4}+2 x\right)\left(x^{3}-3 x^{2}+3\right)\right]$
(b) $\phi_{5}\left[\left(x^{3}+2\right)\left(4 x^{2}+3\right)\left(x^{7}+3 x^{2}+1\right)\right]$
(c) $\phi_{4}\left[3 x^{106}+5 x^{99}+2 x^{53}\right]$
7. Find all the zeros in the indicated finite field of the given polynomial with coefficients in that field.
(a) $x^{3}+2 x+2$ in \mathbb{Z}_{7}
(b) $x^{5}+3 x^{3}+x^{2}+2 x$ in \mathbb{Z}_{5}
(c) $f(x) g(x)$ where $f(x)=x^{3}+2 x^{2}+5$ and $g(x)=3 x^{2}+2 x$ in \mathbb{Z}_{7}
8. Use Fermat's Little Theorem to find all the zeros in \mathbb{Z}_{5} of $2 x^{219}+3 x^{74}+2 x^{57}+3 x^{44}$.
9. Consider the evaluation homomorphism $\phi_{5}: \mathbb{Q}[x] \rightarrow \mathbb{R}$. Find six elements in the kernel of the homomorphism ϕ_{5}.
10. Find a polynomial of degree >0 in $\mathbb{Z}_{4}[x]$ that is a unit.
11. (a) Let D be an integral domain. Describe the units in $D[x]$.
(b) Find the units in $\mathbb{Z}[x]$.
(c) Find the units in $\mathbb{Z}_{7}[x]$.
12. Let F be a field of characteristic zero and let D be the formal polynomial differentiation map:

$$
D\left(a_{n} x^{n}+\cdots+a_{2} x+a_{1} x+a_{0}\right)=n \cdot a_{n} x^{n-1}+\cdots+2 \cdot a_{2} x+a_{1}
$$

(a) Prove that $D:(F[x],+) \rightarrow(F[x],+)$ is a group homomorphism.
(b) Find the kernel of D.
(c) Find the image of $F[x]$ under D. Explain your answer.
(d) Explain why D is not a ring homomorphism. Hypothesize an expression for $D(f(x) g(x))$ and prove your assertion.
(Hint: For parts (c) and (d), think about why you only have to prove for monomials...)
13. Suppose that $f(x), g(x) \in R[x]$, that $\operatorname{deg}(f(x))=m$ and $\operatorname{deg}(g(x))=n$.
(a) Prove that $\operatorname{deg}(f(x)+g(x))=N=\max \{m, n\}$ unless $m=n$ in which case we can only claim that $\operatorname{deg}(f(x)+g(x)) \leq N$.
(b) If $k>m+n$, prove that $a_{i} b_{k-i}=0$ for all $i \in\{0, \ldots, k\}$, so that $\operatorname{deg}(f(x) g(x)) \leq$ $\operatorname{deg}(f(x))+\operatorname{deg}(g(x))$.
(c) In each case, give an explicit example which shows that the inequalities can be strict.

