Math 120B Rings and Fields: Homework 3

Hand in questions 3(b), 5, 6, 8, 11 & 12 at discussion on Tuesday 23rd October

1. Describe the field of fractions Frac(D) of the *Gaussian integers*

 $D = \{x + iy : x, y \in \mathbb{Z}\}$

2. Let *R* be a commutative ring, and let *T* be a non-empty subset of *R* which is closed under multiplication and contains neither zero nor any zero-divisors. Define a relation on $R \times T$ by

 $(a,b) \sim (c,d) \iff ad = bc$

and define the operations $+, \cdot$ as in the construction of the field of fractions of an integral domain. Convince yourself that we can follow the exact procedure to create a *partial ring of quotients* Q(R, T). In particular, prove the following:

- (a) Q(R,T) has a unity, even if *R* does not.
- (b) Every element of *T* is a unit in Q(R, T).
- 3. Consider the previous exercise.
 - (a) How many elements are there in the ring $Q(\mathbb{Z}_4, \{1,3\})$? Is this ring a field? Why/why not?
 - (b) Describe the ring $Q(\mathbb{Z}, \{2^n : n \in \mathbb{N}\})$ by describing a subring of \mathbb{R} to which it is isomorphic. Find the units in this ring.
 - (c) Repeat part (b) for the ring $Q(3\mathbb{Z}, \{6^n : n \in \mathbb{N}\})$.
- 4. Compute the sum and the product of the following polynomials in $\mathbb{Z}_8[x]$:

$$f(x) = 4x - 5$$
 $g(x) = 2x^2 - 4x + 2$

- 5. (a) List all polynomials of degree ≤ 3 in $\mathbb{Z}_2[x]$ (include 0).
 - (b) *How many* polynomials of degree ≤ 2 are there in $\mathbb{Z}_5[x]$? Explain.
- 6. Compute the evaluation homomorphism $\phi_{\alpha} : \mathbb{Z}_{7}[x] \to \mathbb{Z}_{7}$ for each of the following:

(a)
$$\phi_3[(x^4+2x)(x^3-3x^2+3)]$$

(b)
$$\phi_5[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$$

- (c) $\phi_4[3x^{106} + 5x^{99} + 2x^{53}]$
- 7. Find all the zeros in the indicated finite field of the given polynomial with coefficients in that field.
 - (a) $x^3 + 2x + 2$ in \mathbb{Z}_7
 - (b) $x^5 + 3x^3 + x^2 + 2x$ in \mathbb{Z}_5
 - (c) f(x)g(x) where $f(x) = x^3 + 2x^2 + 5$ and $g(x) = 3x^2 + 2x$ in \mathbb{Z}_7

- 8. Use Fermat's Little Theorem to find all the zeros in \mathbb{Z}_5 of $2x^{219} + 3x^{74} + 2x^{57} + 3x^{44}$.
- 9. Consider the evaluation homomorphism $\phi_5 : \mathbb{Q}[x] \to \mathbb{R}$. Find six elements in the kernel of the homomorphism ϕ_5 .
- 10. Find a polynomial of degree > 0 in $\mathbb{Z}_4[x]$ that is a unit.
- 11. (a) Let *D* be an integral domain. Describe the units in D[x].
 - (b) Find the units in $\mathbb{Z}[x]$.
 - (c) Find the units in $\mathbb{Z}_7[x]$.
- 12. Let *F* be a field of characteristic zero and let *D* be the formal polynomial differentiation map:

 $D(a_n x^n + \dots + a_2 x + a_1 x + a_0) = n \cdot a_n x^{n-1} + \dots + 2 \cdot a_2 x + a_1$

- (a) Prove that $D : (F[x], +) \to (F[x], +)$ is a group homomorphism.
- (b) Find the kernel of *D*.
- (c) Find the image of F[x] under *D*. Explain your answer.
- (d) Explain why *D* is *not* a ring homomorphism. Hypothesize an expression for D(f(x)g(x)) and *prove* your assertion.
 (*Hint: For parts (c) and (d), think about why you only have to prove for* monomials...)
- 13. Suppose that $f(x), g(x) \in R[x]$, that $\deg(f(x)) = m$ and $\deg(g(x)) = n$.
 - (a) Prove that $\deg(f(x) + g(x)) = N = \max\{m, n\}$ unless m = n in which case we can only claim that $\deg(f(x) + g(x)) \le N$.
 - (b) If k > m + n, prove that $a_i b_{k-i} = 0$ for all $i \in \{0, \dots, k\}$, so that $\deg(f(x)g(x)) \le \deg(f(x)) + \deg(g(x))$.
 - (c) In each case, give an explicit example which shows that the inequalities can be strict.