Math 120B Rings and Fields: Homework 4

Hand in questions $2,3,5,6,9 \& 10$ at discussion on Tuesday 13th November

1. Describe all ring homomorphisms of $\mathbb{Z} \times \mathbb{Z}$ to $\mathbb{Z} \times \mathbb{Z}$.
2. Find all positive integers n such that \mathbb{Z}_{n} contains a subring isomorphic to \mathbb{Z}_{2}. (Hint: find the subrings of \mathbb{Z}_{4} and \mathbb{Z}_{6} which have two elements. Are they both isomorphic to \mathbb{Z}_{2} ?)
3. (a) Prove that if an ideal $N \leq R$ contains a unit in R, then $N=R$.
(b) Prove that a field only has precisely two ideals.
(c) Find a subring of $\mathbb{Z} \times \mathbb{Z}$ which is not an ideal of $\mathbb{Z} \times \mathbb{Z}$.
4. A student is asked to prove that a factor ring R / N is commutative if and only if $\forall r, s \in R, r s-s r \in N$

The student starts by writing,
Assume R / N is commutative. Then $r s=s r$ for all $r, s \in R / N_{N} \cdots$
(a) Why does the reader expect nonsense from here on?
(b) Prove the assertion properly.
5. Prove that each homomorphism of from a field to a ring is either injective or maps everything to zero.
6. Let R be a commutative ring with unity with prime characteristic p. Prove that $\phi: R \rightarrow R$ defined by $\phi(x)=x^{p}$ is a homomorphism.
7. Let $\phi: R \rightarrow S$ be a ring homomorphism and let N be an ideal of R.
(a) Prove that $\phi(N)$ is an ideal of $\phi(R)$.
(b) Show that $\phi(N)$ need not be an ideal of S.
(c) Let M be an ideal of $\phi(R)$ or S. Prove that $\phi^{-1}(M)=\{x \in R: \phi(x) \in M\}$ is an ideal of R.
8. Let R be a commutative ring and let $a \in R$. Prove that $I_{a}=\{x \in R: a x=0\}$ is an ideal of R.
9. Prove that the intersection of ideals of a ring R is an ideal of R. What ideal is the intersection $4 \mathbb{Z} \cap 10 \mathbb{Z}$ of \mathbb{Z} ? In general, what is $m \mathbb{Z} \cap n \mathbb{Z}$?
10. Recall that an element a of a ring R is nilpotent if $a^{n}=0$ for some $n \in \mathbb{N}$.
(a) Prove that the set of nilpotent elements in a commutative ring R forms an ideal (this is the nilradical of R).
(b) Find the nilradicals of the rings $\mathbb{Z}_{12}, \mathbb{Z}$ and \mathbb{Z}_{32}. Can you describe the nilradical in \mathbb{Z}_{n} in general?
(c) If N is the nilradical of R, prove that R / N has nilradial $\{0+N\}$.

