Math 120B Rings and Fields: Homework 4

Hand in questions 2, 3, 5, 6, 9 & 10 at discussion on Tuesday 13th November

- 1. Describe all ring homomorphisms of $\mathbb{Z} \times \mathbb{Z}$ to $\mathbb{Z} \times \mathbb{Z}$.
- 2. Find all positive integers *n* such that \mathbb{Z}_n contains a subring isomorphic to \mathbb{Z}_2 . (*Hint: find the subrings of* \mathbb{Z}_4 and \mathbb{Z}_6 which have two elements. Are they both isomorphic to \mathbb{Z}_2 ?)
- 3. (a) Prove that if an ideal $N \leq R$ contains a unit in R, then N = R.
 - (b) Prove that a field only has precisely two ideals.
 - (c) Find a subring of $\mathbb{Z} \times \mathbb{Z}$ which is *not* an ideal of $\mathbb{Z} \times \mathbb{Z}$.
- 4. A student is asked to prove that a factor ring $\frac{R}{N}$ is commutative if and only if

 $\forall r, s \in R, rs - sr \in N$

The student starts by writing,

Assume
$$\frac{R}{N}$$
 is commutative. Then $rs = sr$ for all $r, s \in \frac{R}{N}$...

- (a) Why does the reader expect nonsense from here on?
- (b) Prove the assertion properly.
- 5. Prove that each homomorphism of from a field to a ring is either injective or maps everything to zero.
- 6. Let *R* be a commutative ring with unity with prime characteristic *p*. Prove that $\phi : R \to R$ defined by $\phi(x) = x^p$ is a homomorphism.
- 7. Let ϕ : $R \rightarrow S$ be a ring homomorphism and let N be an ideal of R.
 - (a) Prove that $\phi(N)$ is an ideal of $\phi(R)$.
 - (b) Show that $\phi(N)$ need not be an ideal of *S*.
 - (c) Let *M* be an ideal of $\phi(R)$ or *S*. Prove that $\phi^{-1}(M) = \{x \in R : \phi(x) \in M\}$ is an ideal of *R*.
- 8. Let *R* be a commutative ring and let $a \in R$. Prove that $I_a = \{x \in R : ax = 0\}$ is an ideal of *R*.
- 9. Prove that the intersection of ideals of a ring *R* is an ideal of *R*. What ideal is the intersection $4\mathbb{Z} \cap 10\mathbb{Z}$ of \mathbb{Z} ? In general, what is $m\mathbb{Z} \cap n\mathbb{Z}$?
- 10. Recall that an element *a* of a ring *R* is *nilpotent* if $a^n = 0$ for some $n \in \mathbb{N}$.
 - (a) Prove that the set of nilpotent elements in a commutative ring *R* forms an ideal (this is the *nilradical* of *R*).
 - (b) Find the nilradicals of the rings \mathbb{Z}_{12} , \mathbb{Z} and \mathbb{Z}_{32} . Can you describe the nilradical in \mathbb{Z}_n in general?
 - (c) If *N* is the nilradical of *R*, prove that $\frac{R}{N}$ has nilradial $\{0 + N\}$.