Math 120B Rings and Fields: Homework 5

Hand in questions $3,4,6,7 \& 10$ at discussion on Tuesday 27 th November

1. Find all prime ideals and all maximal ideals of the following rings.
(a) \mathbb{Z}_{6}
(b) $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
(c) $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$
(Hint: for parts (b), (c), you might find it helpful to consider each additive subgroup.)
2. Find all elements $c \in \mathbb{Z}_{3}$ such that each of the following is a field.
(a) $\mathbb{Z}_{3}[x] /\left\langle x^{2}+c\right\rangle$
(b) $\mathbb{Z}_{3}[x] /\left\langle x^{3}+x^{2}+c\right\rangle$
(c) $\mathbb{Z}_{3}[x] /\left\langle x^{3}+c x^{2}+1\right\rangle$
3. Repeat the previous question for the following quotient rings where $c \in \mathbb{Z}_{5}$.
(a) $\mathbb{Z}_{5}[x] /\left\langle x^{2}+x+c\right\rangle$
(b) $\mathbb{Z}_{5}[x] /\left\langle x^{2}+c x+1\right\rangle$
4. Find a maximal ideal of $\mathbb{Z} \times \mathbb{Z}$: justify your answer.
5. $x^{2}-5 x+6 \in \mathbb{Q}[x]$ is reducible over \mathbb{Q}. Prove that the quotient ring $\mathbb{Q}[x] /\left\langle x^{2}-5 x+6\right\rangle$ is not a field by finding a non-zero non-unit element.
6. Let R be a finite commutative ring with unity. Show that every prime ideal in R is a maximal ideal.
7. We've seen that every ring with unity contains a subring isomorphic to either \mathbb{Z} or some \mathbb{Z}_{n}.
(a) Is it possible that a ring with unity may contain two subrings isomorphic to \mathbb{Z}_{m} and \mathbb{Z}_{n} with $m \neq n$? If yes, give an example. If no, prove it.
(b) Is part (a) possible for subrings $\mathbb{Z}_{p}, \mathbb{Z}_{q}$ where $p \neq q$ are both prime? Explain.
(c) Repeat part (b) for an integral domain.

These last three questions are more of a challenge.
8. Prove that N is a maximal ideal in a ring R if and only if R / N is non-trivial and has no proper nontrivial ideals $(R / N$ is called a simple ring).
(Hint: let $\gamma: R \rightarrow R /{ }_{N}$ be the canonical homomorphism, and appeal to question 7 of the last homework. Note that γ is surjective...)
9. Prove that $M_{2}\left(\mathbb{Z}_{2}\right)$ is a simple ring (this is the set of 2×2 matrices over \mathbb{Z}_{2}).
(Hint: Any proper ideal cannot contain any units, now rule out the remaining non-trivial elements...)
10. Let \mathbb{F} be a field and let $f, g \in \mathbb{F}[x]$. Show that

$$
N=\{r f+s g: r, s \in \mathbb{F}[x]\}
$$

is an ideal of $\mathbb{F}[x]$. Show that if $\operatorname{deg}(f) \neq \operatorname{deg}(g)$ and that if N is a proper ideal, then f and g cannot both be irreducible over \mathbb{F}.
(Hint: Recall that every ideal of $\mathbb{F}[x]$ is principal...
This question is related to the Euclidean Algorithm, and the notion of a greatest common divisor of f, g.)

