Math 120B Rings and Fields: Homework 5

Hand in questions 3, 4, 6, 7 & 10 at discussion on Tuesday 27th November

- 1. Find all prime ideals and all maximal ideals of the following rings.
 - (a) \mathbb{Z}_6 (b) $\mathbb{Z}_2 \times \mathbb{Z}_2$ (c) $\mathbb{Z}_2 \times \mathbb{Z}_4$ (*Hint: for parts (b), (c), you might find it helpful to consider each additive subgroup.*)
- 2. Find all elements $c \in \mathbb{Z}_3$ such that each of the following is a field.

(a)
$$\mathbb{Z}_3[x]/\langle x^2+c\rangle$$
 (b) $\mathbb{Z}_3[x]/\langle x^3+x^2+c\rangle$ (c) $\mathbb{Z}_3[x]/\langle x^3+cx^2+1\rangle$

3. Repeat the previous question for the following quotient rings where $c \in \mathbb{Z}_5$.

(a)
$$\mathbb{Z}_5[x] / \langle x^2 + x + c \rangle$$
 (b) $\mathbb{Z}_5[x] / \langle x^2 + cx + 1 \rangle$

- 4. Find a maximal ideal of $\mathbb{Z} \times \mathbb{Z}$: justify your answer.
- 5. $x^2 5x + 6 \in \mathbb{Q}[x]$ is reducible over \mathbb{Q} . Prove that the quotient ring $\mathbb{Q}[x]/\langle x^2 5x + 6 \rangle$ is not a field by finding a non-zero non-unit element.
- 6. Let *R* be a finite commutative ring with unity. Show that every prime ideal in *R* is a maximal ideal.
- 7. We've seen that every ring with unity contains a subring isomorphic to either \mathbb{Z} or some \mathbb{Z}_n .
 - (a) Is it possible that a ring with unity may contain *two* subrings isomorphic to \mathbb{Z}_m and \mathbb{Z}_n with $m \neq n$? If yes, give an example. If no, prove it.
 - (b) Is part (a) possible for subrings \mathbb{Z}_p , \mathbb{Z}_q where $p \neq q$ are both *prime*? Explain.
 - (c) Repeat part (b) for an *integral domain*.

These last three questions are more of a challenge.

- 8. Prove that *N* is a maximal ideal in a ring *R* if and only if $\frac{R}{N}$ is non-trivial and has no proper nontrivial ideals ($\frac{R}{N}$ is called a *simple ring*). (*Hint: let* $\gamma : R \to \frac{R}{N}$ be the canonical homomorphism, and appeal to question 7 of the last homework. Note that γ is surjective...)
- 9. Prove that $M_2(\mathbb{Z}_2)$ is a simple ring (this is the set of 2×2 matrices over \mathbb{Z}_2). (*Hint: Any proper ideal cannot contain any units, now rule out the remaining non-trivial elements...*)
- 10. Let \mathbb{F} be a field and let $f, g \in \mathbb{F}[x]$. Show that

$$N = \{rf + sg : r, s \in \mathbb{F}[x]\}$$

is an ideal of $\mathbb{F}[x]$. Show that if $\deg(f) \neq \deg(g)$ and that if *N* is a proper ideal, then *f* and *g* cannot both be irreducible over \mathbb{F} .

(*Hint: Recall that every ideal of* $\mathbb{F}[x]$ *is principal...*

This question is related to the Euclidean Algorithm, and the notion of a greatest common divisor of f, g.)