Math 120B Rings and Fields: Homework 6

Hand in questions $1(\mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{e}), 2,3,4(\mathrm{~b}), \& 5$ at discussion on Tuesday 4th December

1. For each of the following complex numbers α : identify whether α is algebraic or transcendental over the base field \mathbb{F}, justify your answer and find the minimal polynomial $m_{\alpha, \mathbb{F}}$ if algebraic.

	α	F		α	F
(a)	$1+\sqrt{2}$	Q	(e)	$\sqrt{\pi+1}$	Q
(b)	$1+i$	Q	(f)	$\sqrt{i+\sqrt{2}}$	$\mathbf{Q}(i)$
(c)	$\sqrt{1+\sqrt[3]{2}}$	Q	(g)	$\sqrt{i+\sqrt{2}}$	Q
(d)	$\sqrt{1+\sqrt[3]{2}}$	$Q(\sqrt[3]{2})$	(h)	$\sqrt{e^{2}+4}$	Q (e)

2. (a) Find a subfield \mathbb{F} of \mathbb{R} such that π is algebraic of degree 3 over \mathbb{F}.
(b) Find a subfield \mathbb{F} of \mathbb{R} such that e^{2} is algebraic of degree 5 over \mathbb{F}.
3. Prove that $3^{1 / 3} \notin \mathbb{Q}\left(2^{1 / 2}\right)$ and thus find a basis for the field $\mathbb{Q}\left(2^{1 / 2}, 3^{1 / 3}\right)$ over \mathbb{Q}.
4. (a) Prove that $\mathrm{Q}(\sqrt{3}+\sqrt{5})=\mathrm{Q}(\sqrt{3}, \sqrt{5})$. Find all the intermediate fields of the extension $\mathrm{Q}(\sqrt{3}+\sqrt{5}): \mathbf{Q}$. (Look at the calculation for $\mathbf{Q}(\sqrt{2}+i)$ in the notes...)
(b) Find an element $\alpha \in \mathbb{C}$ so that $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$. Find all the intermediate fields of this extension.
5. Show that the polynomial $x^{2}+1 \in \mathbb{Z}_{3}[x]$ is irreducible. Let α be a zero of this polynomial and construct the simple extension

$$
\mathbb{F}_{9}:=\mathbb{Z}_{3}(\alpha)=\{0,1,2, \alpha, 1+\alpha, 2+\alpha, 2 \alpha, 1+2 \alpha, 2+2 \alpha\} \cong \mathbb{Z}_{3}[x] /\left\langle x^{2}+1\right\rangle
$$

Find the addition and multiplication tables of this field. To what elementary groups are $\left(\mathbb{F}_{9},+\right)$ and $\left(\mathbb{F}_{9}^{\times}, \cdot\right)$ isomorphic?
(Hint: consider the cyclic group $\langle 1+\alpha\rangle \leq\left(\mathbb{F}_{9}^{\times}, \cdot\right)$)
6. Repeat the previous question with the polynomial $x^{3}+x^{2}+1 \in \mathbb{Z}_{2}[x]$. You should construct a field \mathbb{F}_{8} with eight elements.
7. Let \mathbb{F} be a finite field with q elements.
(a) Explain why \mathbb{F} must have prime characteristic.
(b) If \mathbb{E} is a finite extension of \mathbb{F} such that $[\mathbb{E}: \mathbb{F}]=n$, prove that $|\mathbb{E}|=q^{n}$.
(c) Let \mathbb{K} be a finite field of characteristic p. Prove that \mathbb{K} contains a subfield (isomorphic to) \mathbb{Z}_{p}. Thus explain why \mathbb{K} has order p^{n} for some $n \in \mathbb{N}$ and why $\mathbb{K}: \mathbb{Z}_{p}$ is an algebraic extension.
(d) If $|\mathbb{K}|=p^{n}$, describe the group $(\mathbb{K},+)$ in accordance with the Fundamental Theorem of Finitely Generate Abelian Groups.
Show that every element of $\alpha \in \mathbb{K}^{\times}$satisfies the equation $\alpha^{p^{n}-1}=1$. Explain why $\exists k$ a divisor of $p^{n}-1$ for which all elements $\alpha \in \mathbb{K}^{\times}$satisfy $\alpha^{k}=1$. How may distinct zeros can the polynomial $x^{k}-1$ have over a field? Hence identify the group $\left(\mathbb{K}^{\times}, \cdot\right)$.

