Math 120B Rings and Fields: Extra Questions for Final

1. Find a basis for the given field extension: there is no need to do so, but you should be able to justify your assertions if necessary.
(a) $\mathrm{Q}(\sqrt{2}, \sqrt{5}): \mathrm{Q}$
(e) $\mathrm{Q}(\sqrt[3]{2}, \sqrt[3]{6}, \sqrt[3]{24}): Q$
(b) $\mathrm{Q}(\sqrt{2} \sqrt{3}): Q$
(f) $Q(\sqrt{2}, \sqrt{6}): Q(\sqrt{3})$
(c) $\mathrm{Q}(\sqrt{2}+\sqrt{5}): \mathrm{Q}$
(g) $Q(\sqrt{2}+\sqrt{3}): Q(\sqrt{3})$
(d) $\mathrm{Q}(\sqrt{2}, \sqrt[3]{5}): \mathrm{Q}$
(h) $Q(\sqrt{2}, \sqrt{6}+\sqrt{10}): Q(\sqrt{3}+\sqrt{5})$
2. Let $\alpha=a+b i \in \mathbb{C}$ where $a, b \in \mathbb{R}$ and $b \neq 0$. Prove that $\mathbb{C}=\mathbb{R}(\alpha)$. Hence or otherwise, prove that every finite extension field of \mathbb{R} is isomorphic to \mathbb{R} or \mathbb{C}.
3. Let α be a zero of the irreducible polynomial $x^{2}+x+1$ over \mathbb{Z}_{2}. The field extension $\mathbb{Z}_{2}(\alpha)$ is therefore algebraic and so the element $1+\alpha \in \mathbb{Z}_{2}(\alpha)$ is also algebraic over \mathbb{Z}_{2}. Find the minimal polynomial of $1+\alpha$ over \mathbb{Z}_{2}.
4. Prove that $x^{2}-3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$.
5. Let $a, b \in \mathbb{Q}$. Prove that $\mathbf{Q}(\sqrt{a}+\sqrt{b})=\mathbb{Q}(\sqrt{a}, \sqrt{b})$.
(You may assume that $\sqrt{a}+\sqrt{b} \neq 0$)
6. Let \mathbb{E} be a finite extension of \mathbb{F} and let $f \in \mathbb{F}[x]$ be irreducible and have a degree which is not a divisor of $[\mathbb{E}: \mathbb{F}]$. Prove that f has no zeros in \mathbb{E}. By giving a counterexample, explain why we need the irreducibility condition?
7. Let $\alpha \in \mathbb{E}$ be algebraic of odd degree over \mathbb{F}. Prove that α^{2} is algebraic of odd degree over \mathbb{F} and that $\mathbb{F}\left(\alpha^{2}\right)=\mathbb{F}(\alpha)$.
8. Prove that no finite field \mathbb{F} can be algebraically closed.
(Hint: If $\mathbb{F}=\left\{a_{1}, \ldots, a_{n}\right\}$, can you construct a polynomial with no zeros in \mathbb{F} ?)
9. Prove that every finite extension field of \mathbb{R} is isomorphic to either \mathbb{R} or \mathbb{C}.
(Be very careful with this!)
10 . For each $n \in \mathbb{N}_{0}$, define the field \mathbb{F}_{n} inductively:

$$
\mathbb{F}_{1}=\mathbb{Q}, \quad \mathbb{F}_{n+1}=\mathbb{F}_{n}\left(n^{1 / n}\right)
$$

(a) What, explicitly are the fields $\mathbb{F}_{2}, \mathbb{F}_{3}, \mathbb{F}_{4}, \mathbb{F}_{5}$ and what are their degrees over \mathbb{Q} ?
(b) Prove explicitly that the set $\mathbb{E}:=\bigcup_{n=1}^{\infty} \mathbb{F}_{n}$ is an infinite algebraic field extension of \mathbb{Q}.

