Math 120B Rings and Fields: Extra Questions for Final

- 1. Find a basis for the given field extension: there is no need to do so, but you should be able to justify your assertions if necessary.
 - (a) $\mathbb{Q}(\sqrt{2}, \sqrt{5}) : \mathbb{Q}$ (e) $\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{6}, \sqrt[3]{24}) : \mathbb{Q}$
 - (b) $Q(\sqrt{2}\sqrt{3}): Q$ (f) $Q(\sqrt{2},\sqrt{6}): Q(\sqrt{3})$
 - (c) $Q(\sqrt{2} + \sqrt{5}) : Q$ (g) $Q(\sqrt{2} + \sqrt{3}) : Q(\sqrt{3})$
 - (d) $Q(\sqrt{2}, \sqrt[3]{5}) : Q$ (h) $Q(\sqrt{2}, \sqrt{6} + \sqrt{10}) : Q(\sqrt{3} + \sqrt{5})$
- 2. Let $\alpha = a + bi \in \mathbb{C}$ where $a, b \in \mathbb{R}$ and $b \neq 0$. Prove that $\mathbb{C} = \mathbb{R}(\alpha)$. Hence or otherwise, prove that every *finite* extension field of \mathbb{R} is isomorphic to \mathbb{R} or \mathbb{C} .
- 3. Let α be a zero of the irreducible polynomial $x^2 + x + 1$ over \mathbb{Z}_2 . The field extension $\mathbb{Z}_2(\alpha)$ is therefore algebraic and so the element $1 + \alpha \in \mathbb{Z}_2(\alpha)$ is also algebraic over \mathbb{Z}_2 . Find the minimal polynomial of $1 + \alpha$ over \mathbb{Z}_2 .
- 4. Prove that $x^2 3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$.
- 5. Let $a, b \in \mathbb{Q}$. Prove that $\mathbb{Q}(\sqrt{a} + \sqrt{b}) = \mathbb{Q}(\sqrt{a}, \sqrt{b})$. (You may assume that $\sqrt{a} + \sqrt{b} \neq 0$)
- 6. Let E be a finite extension of F and let *f* ∈ F[*x*] be irreducible and have a degree which is not a divisor of [E : F]. Prove that *f* has no zeros in E. By giving a counterexample, explain why we need the *irreducibility* condition?
- 7. Let $\alpha \in \mathbb{E}$ be algebraic of odd degree over \mathbb{F} . Prove that α^2 is algebraic of odd degree over \mathbb{F} and that $\mathbb{F}(\alpha^2) = \mathbb{F}(\alpha)$.
- 8. Prove that no finite field \mathbb{F} can be algebraically closed. (*Hint:* If $\mathbb{F} = \{a_1, ..., a_n\}$, can you construct a polynomial with no zeros in \mathbb{F} ?)
- 9. Prove that every finite extension field of ℝ is isomorphic to either ℝ or ℂ. (*Be very careful with this!*)
- 10. For each $n \in \mathbb{N}_0$, define the field \mathbb{F}_n inductively:

$$\mathbb{F}_1 = \mathbb{Q}, \qquad \mathbb{F}_{n+1} = \mathbb{F}_n(n^{1/n})$$

- (a) What, explicitly are the fields \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_4 , \mathbb{F}_5 and what are their degrees over Q?
- (b) Prove explicitly that the set $\mathbb{E} := \bigcup_{n=1}^{\infty} \mathbb{F}_n$ is an infinite algebraic field extension of \mathbb{Q} .