Math 120B Rings and Fields: Extra Questions for Midterm

Submit nothing!

1. Given $f, g \in \mathbb{F}[x]$, find the polynomials $q, r \in \mathbb{F}[x]$ satisfying the division algorithm.

- 2. Express the polynomial as a product of linear factors in the given polynomial ring.
 - (a) $x^4 + 4$ in $\mathbb{Z}_5[x]$.
 - (b) $x^3 + 2x^2 + 2x + 1$ in $\mathbb{Z}_7[x]$.
 - (c) $2x^3 + 3x^2 7x 5$ in $\mathbb{Z}_{11}[x]$.
- 3. Express each of the following polynomials $\mathbb{Z}_5[x]$ as a product of irreducible factors.
 - (a) $x^3 + 2x + 3$ (b) $2x^3 + x^2 + 2x + 2$
- 4. Prove that each of the following polynomials is irreducible over ℚ. Are they irreducible over ℝ or ℂ?
 - (a) $x^2 + 8x 2$ (b) $x^2 + 6x + 12$ (c) $x^3 + 3x^2 - 8$ (d) $x^4 - 22x^2 + 1$
- 5. Determine whether each polynomial in $\mathbb{Z}[x]$ satisfies an Eisenstein criterion for irreducibility over Q.
 - (a) $x^2 12$
 - (b) $8x^3 + 6x^2 9x + 24$
 - (c) $4x^{10} 9x^3 + 24x 18$
 - (d) $2x^{10} 25x^3 + 10x^2 30$
- 6. Find all the zeros of $6x^4 + 17x^3 + 7x^2 + x 10$ in Q.
- 7. Find all prime numbers *p* such that x + 2 is a factor of $x^4 + x^3 x^2 x + 1 \in \mathbb{Z}_p[x]$.
- 8. Find the number of irreducible degree 3 polynomials in $\mathbb{Z}_3[x]$.
- 9. Find the number of irreducible quadratic polynomials in $\mathbb{Z}_p[x]$ where *p* is a prime. (*Hint: Find the number of reducible quadratics first!*)
- 10. If *p* is a prime $a \in \mathbb{Z}_p$, prove that the polynomial $x^p + a$ is reducible in $\mathbb{Z}_p[x]$. (*Hint: Consider* p = 2 *separately from when* p *is odd*)

- 11. If \mathbb{F} is a field and $a \neq 0$ is a zero of $f(x) = a_n x^n + \cdots + a_1 x + a_0$, prove that a^{-1} is a zero of $g(x) = a_0 x^n + \cdots + a_{n-1} x + a_n$.
- 12. (a) Prove that if $\sigma : \mathbb{Z} \to \mathbb{Z}_m$ is the homomorphism $\sigma(a) = a \mod m$, then the function

$$\widetilde{\sigma}: \mathbb{Z}[x] \to \mathbb{Z}_m[x]: \sum a_k x^k \mapsto \sum \sigma(a_k) x^k$$

is a *surjective* homomorphism.

- (b) Hence properly justify the argument seen in class: if p is prime and $f(x) \in \mathbb{Z}[x]$ is a reducible *monic* polynomial, so is $\tilde{\sigma}(f(x)) \in \mathbb{Z}_p[x]$.
- (c) Prove that $x^3 + 17x + 36$ is irreducible over Q. (*Hint: find a suitable prime...*)