Math 120B Rings and Fields: Extra Questions for Midterm

Submit nothing!

1. Given $f, g \in \mathbb{F}[x]$, find the polynomials $q, r \in \mathbb{F}[x]$ satisfying the division algorithm.
(a) $f(x)=x^{6}+3 x^{5}+4 x^{2}-3 x+2$ and $g(x)=x^{2}+2 x-3$ in $\mathbb{Z}_{7}[x]$.
(b) $f(x)=x^{5}-2 x^{4}+3 x-5$ and $g(x)=2 x+1$ in $\mathbb{Z}_{11}[x]$.
2. Express the polynomial as a product of linear factors in the given polynomial ring.
(a) $x^{4}+4$ in $\mathbb{Z}_{5}[x]$.
(b) $x^{3}+2 x^{2}+2 x+1$ in $\mathbb{Z}_{7}[x]$.
(c) $2 x^{3}+3 x^{2}-7 x-5$ in $\mathbb{Z}_{11}[x]$.
3. Express each of the following polynomials $\mathbb{Z}_{5}[x]$ as a product of irreducible factors.
(a) $x^{3}+2 x+3$
(b) $2 x^{3}+x^{2}+2 x+2$
4. Prove that each of the following polynomials is irreducible over \mathbb{Q}. Are they irreducible over \mathbb{R} or C?
(a) $x^{2}+8 x-2$
(b) $x^{2}+6 x+12$
(c) $x^{3}+3 x^{2}-8$
(d) $x^{4}-22 x^{2}+1$
5. Determine whether each polynomial in $\mathbb{Z}[x]$ satisfies an Eisenstein criterion for irreducibility over Q.
(a) $x^{2}-12$
(b) $8 x^{3}+6 x^{2}-9 x+24$
(c) $4 x^{10}-9 x^{3}+24 x-18$
(d) $2 x^{10}-25 x^{3}+10 x^{2}-30$
6. Find all the zeros of $6 x^{4}+17 x^{3}+7 x^{2}+x-10$ in Q .
7. Find all prime numbers p such that $x+2$ is a factor of $x^{4}+x^{3}-x^{2}-x+1 \in \mathbb{Z}_{p}[x]$.
8. Find the number of irreducible degree 3 polynomials in $\mathbb{Z}_{3}[x]$.
9. Find the number of irreducible quadratic polynomials in $\mathbb{Z}_{p}[x]$ where p is a prime. (Hint: Find the number of reducible quadratics first!)
10. If p is a prime $a \in \mathbb{Z}_{p}$, prove that the polynomial $x^{p}+a$ is reducible in $\mathbb{Z}_{p}[x]$. (Hint: Consider $p=2$ separately from when p is odd)
11. If \mathbb{F} is a field and $a \neq 0$ is a zero of $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$, prove that a^{-1} is a zero of $g(x)=a_{0} x^{n}+\cdots+a_{n-1} x+a_{n}$.
12. (a) Prove that if $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}_{m}$ is the homomorphism $\sigma(a)=a \bmod m$, then the function

$$
\widetilde{\sigma}: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{m}[x]: \sum a_{k} x^{k} \mapsto \sum \sigma\left(a_{k}\right) x^{k}
$$

is a surjective homomorphism.
(b) Hence properly justify the argument seen in class: if p is prime and $f(x) \in \mathbb{Z}[x]$ is a reducible monic polynomial, so is $\widetilde{\sigma}(f(x)) \in \mathbb{Z}_{p}[x]$.
(c) Prove that $x^{3}+17 x+36$ is irreducible over \mathbb{Q}. (Hint: find a suitable prime...)

