
5 Diagonalization

5.1 Eigenvalues and Eigenvectors

Suppose V has a finite basis β = {v1, . . . , vn}. We’ve seen that a linear map T ∈ L(V) corresponds to
multiplication by a matrix [T]β ∈ Mn(F):

[T]β[v]β = [T(v)]β

The most desirable situation is when this matrix is diagonal: otherwise said, ∃λi ∈ F such that

[T]β =

λ1 0
. . .

0 λn

 corresponding to ∀i, T(vi) = λivi

Each vector vi is transformed by T in a simple way: without meaningfully changing its direction.

Definition 5.1. Suppose V is a vector space over F and that T ∈ L(V).

1. A non-zero vector v ∈ V is an eigenvectora of T with eigenvalue λ ∈ F if T(v) = λv.

2. The eigenvalues/vectors of A ∈ Mn(F) are those of LA ∈ L(Fn): the equation is Av = λv.

3. If V is finite-dimensional, we say that T is diagonalizable if there exists a basis β of eigenvectors:
otherwise said, [T]β is diagonal. We call β an eigenbasis.

aIn German, eigen indicates ownership: the term was coined by David Hilbert to indicate how eigenvalues and eigen-
vectors belong to a linear map. Earlier mathematicians used the word characteristic in a similar context.

Example 5.2. If β = {v1, v2} is an eigenbasis for A =
(

2 1
3 4

)
, then for vj = ( x

y ) and λj = λ, we have{
2x + y = λx
3x + 4y = λy

⇐⇒
{

y = (λ − 2)x
3x = (λ − 4)y

⇐⇒
{

y = (λ − 2)x
3x = (λ − 4)(λ − 2)x

⇐⇒ (λ − 4)(λ − 2) = 3 (∗)

since x = y = 0 does not produce a basis vector. The polynomial has solutions λ1 = 5, λ2 = 1 which,
upon substitution into the original equations, result in the eigenvectorsa

v1 =

(
1
3

)
, v2 =

(
−1
1

)
Plainly LA is diagonalizable since [LA]β =

(
5 0
0 1

)
is diagonal, and we conclude that {v1, v2} really is

an eigenbasis. Moreover, if ϵ = {i, j} is the standard basis, then

A = [LA]ϵ = Qϵ
β[LA]βQβ

ϵ =

(
1 −1
3 1

)(
5 0
0 1

)(
1 −1
3 1

)−1

where Qϵ
β is the change of co-ordinate matrix: thus A = QDQ−1 where D is diagonal.

aThere is some freedom here: any non-zero scalar multiples of v1, v2 are also eigenvectors; [LA]β is unchanged.
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Warnings! The definition and example should remind you of the following critical facts:

• 0 is never an eigenvector! It is completely uninteresting to observe that v = 0 solves every
equation of the form T(v) = λv.

• If v is an eigenvector of T with eigenvalue λ, then so is any non-zero scalar multiple:

T(kv) = kT(v) = kλv = λ(kv)

Indeed in Example 5.2, the (infinitely many) eigenvectors of A have the form

av1 =

(
a

3a

)
, bv2 =

(
−b
b

)
where a, b ̸= 0

What we really care about are linearly independent eigenvectors, of which A has only two: v1, v2.
While strictly nonsense, it is common and acceptable to state that “A has two eigenvectors,”
rather than the more precise “A has two linearly independent eigenvectors.”

Is every linear map diagonalizable? Does every linear map have eigenvectors?

These are the most obvious questions arising from the definition: the answers to both are a resound-
ing no! To illustrate, here are several examples where we obtain many eigenvectors or very few.

Examples 5.3. 1. Let A =
(

1 4
0 1

)
. If v = ( x

y ) is an eigenvector with eigenvector λ, then{
x + 4y = λx
y = λy

=⇒ xy + 4y2 = λxy = xy =⇒ y = 0 =⇒ λ = 1

A is non-diagonalizable: it has one independent eigenvector v =
(

1
0

)
with eigenvalue λ = 1.

2. The matrix A =
(

0 −1
1 0

)
∈ M2(R) acts by rotation counter-clockwise by 90° in R2. Since Av is

perpendicular to v, we see that A has no eigenvectors! In particular, A is not diagonalizable.

However, see Example 5.7.3 for what happens when A is viewed as a complex matrix.

3. Let T = d
dx be defined by differentiation on some vector space of functions V.

A non-zero function f ∈ V is an eigenvector (eigenfunction) of T with eigenvalue λ if and only
if it satisfies the natural growth equation f ′ = λ f . As seen in calculus/ODEs, all solutions have
the form f (x) = ceλx where c is constant. Here are three specific cases:

(a) If V is the space of all differentiable functions, then T has infinitely many linearly indepen-
denta eigenvectors f (x) = eλx. In this context diagonalizability is meaningless since V is
infinite-dimensional.

(b) If V = P(R) is the space of polynomials, then T has exactly one independent eigenvector
f (x) = 1 with eigenvalue λ = 0.

(c) Let β = {sin x, cos x} and V = SpanR{sin x, cos x}, then [T]β =
(

0 −1
1 0

)
is the matrix above,

and so T has no eigenvectors.
(d) If β = {ex, e2x, e5x} and V = SpanR β, then T is diagonalizable; indeed β is an eigenbasis.

aThat these functions are linearly independent is a little tricky and was discussed in the first chapter.
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Finding Eigenvalues and Eigenvectors in Finite-Dimensions

As Example 5.3.3 shows, linear operators on infinite-dimensional vector spaces can have eigenvec-
tors, though the computation of such is usually case-specific. In the finite-dimensional situation, we
can approach matters systematically. First we observe that we need only consider matrices.

Lemma 5.4. Let T ∈ L(V) where dim V = n and suppose β is a basis of V. Then

T(v) = λv ⇐⇒ [T]β[v]β = λ[v]β

Otherwise said:

• T has the same eigenvalues as any matrix of T with respect to any basis.

• The co-ordinate isomorphism ϕβ : V → Fn : v 7→ [v]β maps eigenvectors of T to those of [T]β.

The lemma says that to compute the eigenvalues and eigenvectors of T, we simply compute those of
its matrix [T]β with respect to any basis β and then translate.

With this identification out of the way, let A ∈ Mn(F) have eigenvector v with eigenvalue λ. Observe:

Av = λv ⇐⇒ (A − λI)v = 0 (†)

where I is the identity matrix. Since v ̸= 0, the nullspace N (A − λI) is non-trivial. Indeed

λ is an eigenvalue of A ⇐⇒ null(A − λI) > 0 ⇐⇒ rank(A − λI) < n
⇐⇒ det(A − λI) = 0

where we used the Rank–Nullity Theorem and a standard property of the determinant.

Definition 5.5. The characteristic polynomial of a matrix A is p(t) := det(A − tI).
When dim V = n, the characteristic polynomial of T ∈ L(V) may be computed with respect to any
basis β of V

p(t) = det(T − tI) := det[T − tI]β = det([T]β − tIn)

In either case, the characteristic equation is p(t) = 0.

Plainly λ is an eigenvalue if and only if p(λ) = 0. Once we have an eigenvalue, (†) says that the
corresponding eigenvectors lie in the nullspace N (A − λI). To summarize:

Theorem 5.6. Let A ∈ Mn(F).

1. The characteristic polynomial p(t) is a degree n polynomial in t with leading term (−1)ntn.

2. A has at most n eigenvalues, precisely the solutions to the characteristic equation p(t) = 0.

3. An eigenvector with eigenvalue λ is any non-zero element of the eigenspace Eλ := N (A − λI).

Once part 1 is proved, the rest follows immediately from our above discussion and the fact that a
degree n polynomial has at most n solutions. Before seeing this, we revisit our past examples in this
language and see another.
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Examples 5.7. 1. (Example 5.2) A =
(

2 1
3 4

)
has characteristic polynomial

p(t) = det
(

2 − t 1
3 4 − t

)
= (2 − t)(4 − t)− 3 = t2 − 6t + 5 = (t − 5)(t − 1)

recovering the eigenvalues λ1 = 5 and λ2 = 1. We can now find the nullspaces:

• λ1 = 5: N (A − λ1 I) = N
(
−3 1
3 −1

)
= Span

(
1
3

)
• λ2 = 1: N (A − λ2 I) = N

(
1 1
3 3

)
= Span

(
−1
1

)
We may therefore choose two independent eigenvectors v1 =

(
1
3

)
, v2 =

( −1
1

)
: these form an

eigenbasis {v1, v2}.

2. (Example 5.3.2) A =
(

0 −1
1 0

)
has characteristic equation p(t) = det

( −t −1
1 −t

)
= t2 + 1 = 0.

Since this has no solutions (in R), we see that A has no eigenvalues. However, if we consider
A ∈ M2(C) as a complex matrix, then there are two eigenvalues λ1 = i and λ2 = −i: indeed

N (A − λ1 I) =
(
−i −1
1 −i

)
= Span

(
i
1

)
and N (A − λ2 I) = Span

(
−i
1

)
so we may choose two independent eigenvectors v1, v2 ∈ C2. These form a basis and so A is
diagonalizable as a complex matrix.

3. Let T ∈ L(P2(R)) be defined by

T( f )(x) =
∫ 2

0
f (x)dx + (x − 3) f ′(x)

With respect to the standard basis, we have the matrix A = [T]ϵ =
(

2 −1 8
3

0 1 −6
0 0 2

)
whose eigenval-

ues are the solutions of the characteristic equation

0 = p(t) = det(A − tI) = (2 − t)2(1 − t) ⇐⇒ t = 1, 2

Now compute the nullspaces:

• λ1 = 1: N (A − λ1 I) = N

1 −1 8
3

0 0 −6
0 0 1

 = Span

1
1
0


• λ2 = 2: N (A − λ2 I) = N

0 −1 8
3

0 −1 −6
0 0 0

 = Span

1
0
0


We may therefore choose two independent eigenvectors of A; v1 =

(
1
1
0

)
and v2 =

(
1
0
0

)
. These

correspond to polynomials f1, f2 ∈ P2(R) or eigenfunctions of T:

v1 = [ f1]ϵ =⇒ f1(x) = 1 + x
v2 = [ f2]ϵ =⇒ f2(x) = 1

It is easily checked directly that T( f1) = f1 and T( f2) = 2 f2. Since T has insufficient indepen-
dent eigenvectors, we see that it is not diagonalizable.
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We now give an induction argument to complete the proof of Theorem 5.6: that p(t) is a degree n
polynomial. First observe the following obvious fact: in any cofactor expansion of the determinant,
one never multiplies an entry of a matrix by itself. . .

Lemma 5.8. If B(t) is a square matrix, k of whose entries are linear functions of t with the rest
constant, then det B(t) is a polynomial in t with degree ≤ k.

The main argument is a little difficult to follow, so first consider an example where we expand the
characteristic polynomial of a 3 × 3 matrix along the first row.

B =

 1 3 2
−1 0 4
1 −2 5

 =⇒ p(t) =

∣∣∣∣∣∣
1 − t 3 2
−1 −t 4
1 −2 5 − t

∣∣∣∣∣∣
= (1 − t)

∣∣∣∣−t 4
−2 5 − t

∣∣∣∣− 3
∣∣∣∣−1 4

1 5 − t

∣∣∣∣+ 2
∣∣∣∣−1 −t

1 −2

∣∣∣∣
= (b11 − t)det B̃11(t)− b12 det B̃12(t) + b13 det B̃13(t)

In each case B̃1j(t) is the 1jth minor of the matrix B − tI. Observe that

deg(det B̃1j(t)) =

{
2 if j = 1
1 otherwise

=⇒ deg(p(t)) = 3

This is essentially the induction step in the following proof with n = 2.

Proof of Theorem 5.6, part 1. Since only n entries of the matrix A − tI contain t, the Lemma tells us that
the maximum degree of p(t) = det(A − tI) is n.

It remains to prove that the leading term of p(t) is (−1)ntn: we prove by induction on n.
(Base Case) If n = 1, then A = (a) and so p(t) = −t + a as required.

(Induction Step) Fix n ∈ N and assume for every matrix A ∈ Mn(F) that

p(t) = (−1)ntn + · · ·

Let B ∈ Mn+1(F) and compute using the cofactor expansion along the first row:

det(B − tI) = (b11 − t)det B̃11(t)− b12 det B̃12(t) + · · ·

where B̃1j(t) is the n × n minor obtained by deleting the 1st row and jth column of B − tI. There are
two cases:

If j = 1: B̃11(t) = B11 − tI ∈ Mn(F). By the induction hypothesis its determinant is a degree n
polynomial with leading term (−1)ntn. It follows that

(b11 − t)det B̃11(t) = (−1)n+1tn+1 + lower order terms

If j ≥ 2: B̃1j(t) ∈ Mn(F) where n − 1 of the entries contain a t: we have deleted the first row and
jth column and thus removed two of the diagonal t-terms from B − tI. By the Lemma, det B̃1j(t)
is a polynomial of degree at most n − 1.

Summing these polynomials completes the proof.
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Exercises 5.1 1. For each matrix A ∈ Mn(F), find the eigenvalues and a set of linearly independent
eigenvectors. If an eigenbasis exists, state an invertible matrix Q and a diagonal matrix D such
that A = QDQ−1.

(a) A =
(

1 2
3 2

)
∈ M2(R) (b) A =

( 0 −2 −3
−1 1 −1
2 2 5

)
∈ M3(R)

(c) A =
( i 1

2 −i
)
∈ M2(C) (d) A =

(
2 0 −1
4 1 −4
2 0 −1

)
∈ M3(R)

2. For each linear operator T on a vector space V, find an ordered basis β such that [T]β is diagonal.

(a) V = P2(R) and T
(

f (x)
)
= x f ′(x) + f (2)x + f (3)

(b) V = P3(R) and T
(

f (x)
)
= x f ′(x) + f ′′(x)− f (2)

3. If A and B are similar matrices (B = QAQ−1 for some Q), prove that v is an eigenvector of A if
and only if Qv is an eigenvector of B with the same eigenvalue.

4. Prove that the characteristic polynomial p(t) = det(T − tI) = det([T]β − tI) of a linear map
T ∈ L(V) is independent of the choice of basis β used in its computation.

5. Suppose A ∈ Mn(C) is a real matrix with eigenvalue λ ∈ C and eigenvector v ∈ Cn.

(a) Prove that the complex conjugate v is also an eigenvector. What is its eigenvalue?

(b) Prove that if v = aw for some (complex) scalar a and real vector w ∈ Rn, then λ ∈ R.

(c) Is the converse of part (b) true? Explain. In particular, if λ ∈ R, consider the real and
imaginary parts of v

x :=
1
2
(v + v) y :=

1
2i
(v − v)

and prove that dimR Span{x, y} = dimC Span{v, v}. What does this mean for the eigen-
vectors of A?

6. Let p(t) = (−1)ntn + cn−1tn−1 · · ·+ c0 be the characteristic polynomial of a matrix A.

(a) Prove that c0 = det A and hence conclude that A is invertible if and only if c0 ̸= 0.

(b) Prove that p(t) = (a11 − t)(a22 − t) · · · (ann − t) + q(t) where deg q(t) ≤ n − 2. Hence
argue that cn−1 = (−1)n−1 tr A.
(Hint: try an induction proof )
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5.2 Diagonalizability

We have now seen how to compute eigenvectors in finite dimensions, and observed that diagonal-
izability is equivalent to the existence of an eigenbasis. In this section we consider the question of
when an eigenbasis might exist.

Theorem 5.9. Suppose v1, . . . , vk are eigenvectors of T ∈ L(V) corresponding to distinct eigenval-
ues λ1, . . . , λk. Then the set {v1, . . . , vk} is linearly independent.

Proof. We prove by induction on k. The base case k = 1 is trivial.
Fix k ∈ N: for the induction hypothesis, suppose every set of k eigenvectors corresponding to k
distinct eigenvalues is linearly independent. To obtain a contradiction, suppose {v1, . . . , vk, vk+1}
is a linearly dependent set of k + 1 eigenvectors corresponding to distinct eigenvalues λ1, . . . , λk+1.
WLOG, we may assume

∃a1, . . . , ak ∈ F such that a1v1 + · · ·+ akvk + vk+1 = 0 (∗)

Apply T to this linear dependence and substitute for vk+1 using (∗):

k

∑
j=1

ajλjvj + λk+1vk+1 = 0 =⇒
k

∑
j=1

aj(λj − λk+1)vj = 0

=⇒ aj(λj − λk+1) = 0 =⇒ aj = 0

where we used the linear independence of {v1, . . . , vk} and the distinctness of the λ1, . . . , λk+1. But
this shows that vk+1 = 0 is not an eignevector: contradiction. We conclude that {v1, . . . , vk+1} is
linearly independent.
By induction, the result is proved.

Suppose dim V = n and that the degree n characteristic polynomial of T ∈ L(V) has distinct roots;1

p(t) = (−1)n(t − λ1) · · · (t − λn) = (λ1 − t) · · · (λn − t)

where λ1, . . . , λn are the distinct eigenvalues of T. Since each λj implies the existence of at least one
eigenvector vj, the Theorem says that {v1, . . . , vn} is linearly independent and thus a basis of V (an
eigenbasis for T). We therefore have a simple sufficient condition for the diagonalizability of T.

Corollary 5.10. Suppose dimF V = n and T ∈ L(V). If T has n distinct eigenvalues (equivalently
p(t) has n distinct roots in the field F), then T is diagonalizable.

To orient ourselves, recall Examples 5.7.

1. A =
(

2 1
3 4

)
∈ M2(R) has distinct eigenvalues λ = 1, 5 ∈ R and is diagonalizable.

2. A =
(

0 −1
1 0

)
∈ M2(C) has distinct eigenvalues λ = ±i ∈ C and is diagonalizable.

3. T ∈ L(P2(R)) defined by T( f )(x) =
∫ 2

0 f (x)dx + (x − 3) f ′(x) has only two distinct eigenval-
ues λ = 1, 2 and is non-diagonalizable.

1From algebra, every degree n polynomial has at most n distinct roots.
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After reviewing the examples, it might feel as if the Corollary should be biconditional. However, a
trivial example says not: the identity map IV ∈ T(V) has only one eigenvalue λ = 1 but is plainly
diagonalizable (by any basis!). We now develop a necessary condition for diagonalizability.

Definition 5.11. A degree n polynomial p(t) splits over a field F if it factorizes completely over F.
Otherwise said, ∃c, α1, . . . , αn ∈ F such that

p(t) = c(t − α1) · · · (t − αn)

The values α1, . . . , αn are the roots or zeros of the polynomial.

Example 5.12. p(t) = t2 + 4 = (t − 2i)(t + 2i) does not split over R, but does split over C.

Theorem 5.13. If T is diagonalizable, then its characteristic polynomial splits.

Proof. Let β = {v1, . . . , vn} be an eigenbasis, then [T]β is diagonal with the eigenvalues down the
diagonal. But then the characteristic polynomial of T splits:

p(t) = det([T]β − tI) = (λ1 − t) · · · (λn − t)

Putting Corollary 5.10 and Theorem 5.13 together, we have

p(t) has distinct roots =⇒ T diagonalizable =⇒ p(t) splits

Our ‘identity’ observation above shows that these conditions are not equivalent. Here is another
example of repeated eigenvalues.

Examples 5.14. The polynomial p(t) = (6 − t)(4 − t)2 splits but does not have three distinct roots.
This is not an idle example, for p is the characteristic polynomial of many linear maps, some diago-
nalizable, some not. For instance:

1. A =
( 6 0 0

0 4 0
0 0 4

)
is diagonalizable (it’s already diagonal!) with eigenbasis {i, j, k}.

2. B =
( 6 0 0

0 4 1
0 0 4

)
is non-diagonalizable. To verify this, observe that

N (B − 6I) = N

0 0 0
0 −2 1
0 0 −2

 = Span

1
0
0


N (B − 4I) = N

2 0 0
0 0 1
0 0 0

 = Span

0
1
0


We can therefore find only two independent eigenvectors v1 = i and v2 = j.

To obtain a fuller description of diagonalizability, we need to come to terms with the discrepancy
above: p(t) has root (λ = 4) with multiplicity two, but we can only find one independent eigenvector
(v2 = j) with this eigenvalue Bv2 = 4v2.
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Definition 5.15. Suppose V is finite-dimensional and that T ∈ L(V) has an eigenvalue λ.

1. The geometric multiplicity of λ is the dimension dim Eλ of its eigenspacea

Eλ := N (T − λI)

2. The algebraic multiplicity mult(λ) of λ is the highest power m for which (t − λ)m is a factor of
the characteristic polynomial p(t). Otherwise said, there exists a polynomial q(t) such that

p(t) = (t − λ)mq(t) and q(λ) ̸= 0

av is an eigenvector with eigenvalue λ if and only if v ∈ Eλ is non-zero.

Example (5.14, mark II). Here are the eigenspaces and multiplicities for B: note how the algebraic
and geometric multiplicities differ.

eigenvalue λ 6 4
algebraic multiplicity mult(λ) 1 2

eigenspace Eλ Span i Span j
geometric multiplicity dim Eλ 1 1

We can now state the main result.

Theorem 5.16. Suppose dim V = n and that T ∈ L(V) has distinct eigenvalues λ1, . . . , λk.

1. For each eigenvalue λi, we have dim Eλi ≤ mult(λi).

2. The following are equivalent:

(a) T is diagonalizable.

(b) The characteristic polynomial of T splits and dim Eλi = mult(λi) for each i;

p(t) = (λ1 − t)dim Eλ1 · · · (λk − t)dim Eλk

(c) ∑k
i=1 dim Eλi = n.

(d) V = Eλ1 ⊕ · · · ⊕ Eλk .

We’ll prove this shortly, but first, here are two examples where the calculations have been omitted.

Examples 5.17. 1. A =

( 2 0 0 0
0 3 1 0
0 0 3 1
0 0 0 3

)
is non-diagonalizable: p(t) = (2 − t)(3 − t)3 splits, but,

λ 2 3
mult(λ) 1 3

Eλ Span e1 Span e2

dim Eλ 1 1

dim E3 ̸= mult(3), and
2

∑
i=1

dim Eλi = 2 < 4
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2. Let B =

( −1 6 0 0
−2 6 0 0
0 0 3 0
0 0 0 3

)
is diagonalizable. Indeed p(t) = (2 − t)(3 − t)3 splits, and we have

λ 2 3
mult(λ) 1 3

Eλ Span(2e1 + e2) Span{3e1 + 2e2, e3, e4}
dim Eλ 1 3

and R4 = E2 ⊕ E3

From the table, we can read off an eigenbasis with respect to which the map is diagonal

β =




2
1
0
0

 ,


3
2
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 =⇒ [LB]β =


2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3



Proof. 1. Let r = dim Eλ and extend a basis βλ of Eλ to a basis β = βλ ∪ γ of V.

Since T(v) = λv for all v ∈ Eλ, we see that the matrix of T has block form [T]β =

(
λIr A
O B

)
for some matrices A, B, from which the characteristic polynomial of T is

p(t) = det
(

(λ − t)Ir A
O B − tIn−r

)
= (λ − t)r det(B − tIn−r)

It follows that (λ − t)dim Eλ divides p(t), and so dim Eλ ≤ mult(λ).

2. We give a brief summary:

(a) =⇒ (b) If T is diagonalizable, then p(t) splits by Theorem 5.13, whence ∑ mult(λi) = n.
The cardinality n of an eigenbasis is at most ∑ dim Eλi . Combined with part 1, we have
equality of multiplicities:

n ≤ ∑ dim Eλi ≤ ∑ mult(λi) = n =⇒ dim Eλi = mult(λi)

(b) =⇒ (c) p(t) splits =⇒ n = ∑ mult(λi) = ∑ dim Eλi

(c) =⇒ (d) This requires an induction on the number of distinct eigenvalues.
For the induction step, fix j < k and let vj+1 be an eigenvector with eigenvalue λj+1. If
vj+1 ∈ Eλ1 ⊕ · · · ⊕ Eλj then there exist eigenvectors vi ∈ Eλi and ai ∈ F for which

vj+1 = a1v1 + · · ·+ ajvj

But this contradicts the linear independence of the set {v1, . . . , vj+1} (Theorem 5.9).

By induction, Eλ1 ⊕ · · · ⊕ Eλk exists; by assumption it has dimension n = dim V and thus
equals V.

(d) =⇒ (a) is trivial since (d) says there exists a basis of eigenvectors.
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Exercises 5.2 1. For each matrix, find its characteristic polynomial, its eigenvalues/spaces, its alge-
braic and geometric multiplicities and decide if it is diagonalizable.

(a) A =

( 4 1 0 0
0 4 0 0
0 0 4 0
0 0 0 3

)
(b) B =

( 1 0 0 0
0 −4 0 4
0 0 1 0
0 −6 0 6

)
2. Let T = d

dx be the derivative operator.

(a) If we consider T = L(P2(R)), show that T is not diagonalizable.

(b) More generally, what is the characteristic polynomial of T ∈ L(Pn(R))? Why is it clear
that T is non-diagonalizable?

3. Diagonalize A =
(

1 4
2 3

)
∈ M2(R), and thus find an expression for An for any n ∈ N.

4. Show that the characteristic polynomial of A =
(

3 −4
4 3

)
does not split over R. Diagonalize A

over C.

5. Suppose T is a linear operator on a finite dimensional vector space V and that β is a basis of V
with respect to which [T]β is diagonal. Prove that the characteristic polynomial of T splits.

6. Suppose T ∈ L(V) is invertible with eigenvalue λ. Prove that λ−1 is an eigenvalue of T−1 with
the same eigenspace. If T is diagonalizable, prove that T−1 is diagonalizable.

7. If p(t) splits, prove that det T = λ
mult(λ1)
1 · · · λ

mult(λk)
k is the product of its distinct eigenvalues

up to (algebraic) multiplicity.
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5.3 Invariant Subspaces and the Cayley–Hamilton Theorem

Eigenspaces of a linear map provide a simple example of a special type of subspace.

Definition 5.18. Suppose T ∈ L(V). A subspace W of V is T-invariant if T(W) = {T(w) : w ∈ W}
is a subspace of W. In such a case we define the restriction TW ∈ L(W) by

TW : W → W : w 7→ T(w)

Much can often be understood about a linear map by considering its invariant subspaces.
We start by extending the proof of Theorem 5.16 (part 1) to any invariant subspace.

Theorem 5.19. Suppose T ∈ L(V), that dim V is finite and that W ≤ V is T-invariant. Then the
characteristic polynomial pW(t) of TW divides that of T.

Proof. Extend a basis βW of W to a basis β = βW ∪ γ of V. Then ∃A, B such that

[T]β =

(
[TW ]βW A

O B

)
=⇒ p(t) = det([TW ]βW − tI)det(B − tI) = pW(t)det(B − tI)

Examples 5.20. 1. Every eigenspace Eλ is T-invariant: ∀w ∈ Eλ, we have, T(w) = λw ∈ Eλ.

Restricted to the eigenspace, the linear map is simply TEλ
= λI, with characteristic polynomial

pλ(t) = (λ − t)dim Eλ . This divides p(t), as seen in Theorem 5.16.

2. If A =
(

1 2 4
0 3 1
0 0 2

)
, then LA ∈ L(R3) has an invariant subspace W = Span{i, j}. It is easy to check

that, with respect to the standard basis, the restriction of LA to W has matrix
(

1 2
0 3

)
Since both

this and A are upper triangular, we quickly verify that

p(t) = (1 − t)(2 − t)(3 − t) = (2 − t)pW(t)

We now consider a more general type of invariant subspace.

Definition 5.21. Let T ∈ L(V) and v ∈ V. The T-cyclic subspace generated by v is the span

⟨v⟩ = Span{v, T(v), T2(v), . . .}

The T-cyclic subspace ⟨v⟩ is the smallest T-invariant subspace containing v (see Exercise 5.3.4).

Examples 5.22. 1. If A =
( 5 0 0

0 −4 1
0 0 −4

)
, then the eigenspaces are LA-cyclic subspaces:

E5 = Span i = ⟨i⟩ , E−4 = Span j = ⟨j⟩

There are other examples, for instance ⟨k⟩ = Span{j, k} is LA-cyclic, but is not an eigenspace.

2. dim ⟨v⟩ = 1 ⇐⇒ v is an eigenvector of T.

3. Not every T-invariant subspace is T-cyclic: for instance, if T = I is the identity, then every
subspace is T-invariant, however only the one-dimensional subspaces are T-cyclic!

12



For T-cyclic subspaces, we can extend Theorem 5.19 further.

Theorem 5.23. Let V be finite dimensional, T ∈ L(V), and suppose W = ⟨w⟩ is T-invariant with
dim W = k. Then:

1. βW = {w, T(w), . . . , Tk−1(w)} is a basis of W.

2. If Tk(w) + ak−1Tk−1(w) + · · ·+ a0w = 0, then the characteristic polynomial of TW is

pW(t) = (−1)k
(

tk + ak−1tk−1 + · · ·+ a1t + a0

)
3. pW(TW) = 0.

Proof. 1. Let i be maximal such that {w, T(w), . . . , Ti−1(w)} is linearly independent. Observe:

• Plainly i exists since a maximal linearly independent set is finite (dim W < ∞).
• By the maximality of i, Ti(w) ∈ Span{w, T(w), . . . , Ti−1(w)}; by induction this extends to

j ≥ i =⇒ Tj(w) ∈ Span{w, T(w), . . . , Ti−1(w)}

It follows that W = Span{w, T(w), . . . , Ti−1(w)}.

We conclude that {w, T(w), . . . , Ti−1(w)} is a basis of W, whence i = k.

2. Expand the characteristic polynomial along the first row:

pW(t) = det([TW ]βW − tIk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−t 0 0 · · · 0 −a0
1 −t 0 0 −a1
0 1 −t 0 −a2
...

. . .
...

0 0 0 −t −ak−2
0 0 0 · · · 1 −ak−1 − t

∣∣∣∣∣∣∣∣∣∣∣∣∣

= −t

∣∣∣∣∣∣∣∣∣∣∣

−t 0 0 −a1
1 −t 0 −a2
...

. . .
...

0 0 −t −ak−2
0 0 · · · 1 −ak−1 − t

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)ka0

∣∣∣∣∣∣∣∣∣∣∣∣

1 −t 0 · · · 0
0 1 −t 0
...

. . . . . .
...

0 0
. . . −t

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
The second matrix has determinant 1, yielding the (−1)ka0 term. The first is −t multiplied by
a determinant of the same type but one dimension lower. An induction finishes things off.

3. Write S ∈ L(V) for the linear map

S := pW(T) = Tk + ak−1Tk−1 + · · ·+ a0I

Part 2 says S(w) = 0. Since S is a polynomial in T, it commutes with all powers of T:

∀i, S(Ti(w)) = Ti(S(w)) = 0

Since S is zero on the basis βW of W, we see that SW is the zero function.
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While the previous result is a little intense, the punchline of the discussion is thankfully much cleaner.

Corollary 5.24 (Cayley–Hamilton). A linear map satisfies its characteristic polynomial.

Proof. Let v ∈ V and consider the T-cyclic subspace W = ⟨v⟩ generated by v. By Theorem 5.19, the
characteristic polynomial pW(t) of the restriction TW satisfies

p(t) = qW(t)pW(t)

for some polynomial qW(t). However, Theorem 5.23 part 3 says that pW(T)(v) = 0, whence

p(T)(v) = 0

Since we may apply this reasoning to any v ∈ V, we conclude that p(T) ≡ 0 is the zero function.

The Cayley–Hamilton Theorem is used extensively to develop the idea of diagonalizability in in-
ner product spaces and in the discussion of Jordan canonical forms. We will simply apply it to the
calculation of inverses and large powers of a linear map.

Examples 5.25. 1. (Example 5.2) A =
(

2 1
3 4

)
has p(t) = t2 − 6t + 5 and we confirm:

A2 − 6A =

(
7 6
18 19

)
− 6

(
2 1
3 4

)
= −5I

It may seem like a strange thing to do for this matrix, but the characteristic equation can be
used to calculate the inverse of A:

A2 − 6A + 5I = 0 =⇒ A(A − 6I) = −5I =⇒ A−1 =
1
5
(6I − A) =

1
5

(
4 −1
−3 2

)
2. (Example 5.7.3) We use the Cayley–Hamilton Theorem to compute T4 when

A = [T]ϵ =
(

2 −1 8
3

0 1 −6
0 0 2

)
with p(t) = (2 − t)2(1 − t) = 4 − 8t + 5t2 − t3

By Cayley–Hamilton,

T4 = T ◦ T3 = T ◦ (5T2 − 8T + 4I) = 5T3 − 8T2 + 4T = 5(5T2 − 8T + 4I)− 8T2 + 4T

= 17T2 − 36T + 20I

We can easily(!) compute the matrix:

[T4]ϵ = 17A2 − 36A + 20I = 17
(

4 −3 50
3

0 1 −18
0 0 4

)
− 36

(
2 −1 8

3
0 1 −6
0 0 2

)
+ 20

( 1 0 0
0 1 0
0 0 1

)
=

(
16 −15 562

3
0 1 −90
0 0 16

)
It follows, for example, that

T4(35 − 3x2) = 35 · 16 − 3
(

562
3

− 90x + 16x2
)
= −2 + 270x − 48x2
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3. The linear map T ∈ L(P2(R)) defined by T( f (x)) = f (x) + (x − 1) f ′(x) has characteristic
polynomial

p(t) = (1 − t)(2 − t)(3 − t) = −t3 + 6t2 − 11t + 6

as is easily seen by computing the matrix of T with respect to the standard basis {1, x, x2}. By
Cayley–Hamilton, we conclude that T3 = 6T2 − 11T + 6I. You can also check this explicitly,
after first computing

T2( f )(x) = f (x) + 3(x − 1) f ′(x) + (x − 1)2 f ′′(x)

T3( f )(x) = f (x) + 7(x − 1) f ′(x) + 6(x − 1)2 f ′′(x)

We can also apply Cayley–Hamilton to find the inverse of T:

I =
1
6
(T3 − 6T2 + 11T) =⇒ T−1 =

1
6
(T2 − 6T + 11I)

=⇒ T−1( f )(x) = f (x)− 1
2
(x − 1) f ′(x) +

1
6
(x − 1)2 f ′′(x)

Warning! This is only the inverse of T viewed as a linear transformation of P2(R)! If we change
the vector space, the formula for the inverse will also change. . .

Exercises 5.3 1. Find a basis for the T-cyclic subspace ⟨v⟩ of the given linear map:

(a) T
( a

b
c
d

)
=

(
a+b
b−c
a+c
a+d

)
on R4, where v =

( 1
0
0
0

)
(b) T( f )(x) = f ′′(x) on P3(R), where v = x3

(c) T( f )(x) = f ′′(x) + f (x) on Span{1, sin x, cos x, x sin x, x cos x} where v = 1 + x sin x.

2. If A =

( 4 1 0 0
0 4 0 0
0 0 4 0
0 0 0 3

)
, find three distinct invariant subspaces W ≤ R4 such that dim W = 3.

(Hint: What is Ae2?)

3. Let T ∈ L(V) and v ∈ V. Prove that dim ⟨v⟩ = 1 ⇐⇒ v is an eigenvector of T.

4. We earlier remarked that the T-cyclic subspace ⟨v⟩ is the smallest T-invariant subspace of V
containing v. To flesh this out, prove the following explicitly:

(a) ⟨v⟩ is T-invariant.

(b) If W ≤ V is T-invariant and v ∈ W, then ⟨v⟩ ≤ W.

5. Consider the linear map LA : R3 → R3 where A =
( 3 0 0

0 2 4
0 0 2

)
(a) Find the LA-cyclic subspace generated by each v ∈ R3. In particular, prove that ⟨v⟩ =

R3 ⇐⇒ ac ̸= 0.
(Hint: first compute det(v Av A2v) for any v = ai + bj + ck)

(b) Check that the Cayley–Hamilton Theorem is satisfied for LA.
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6. Let T( f )(x) = f ′(x) + 1
x

∫ x
0 f (t)dt be a linear map T ∈ L(P2(R)).

(a) Find the characteristic polynomial of T and identify its eigenspaces. Is it diagonalizable?

(b) Find a, b, c ∈ R such that T3 = aT2 + bT + cI.

(c) What are dimL(P2(R)) and dim Span{Tk : k ∈ N0}? Explain.

7. Recall Exercise 5.25.3. Find an explicit expression for T−1( f )(x) (i.e. using derivatives!) when
T is viewed as a linear transformation of P1(R).

8. For any matrix A ∈ Mn(F), prove that

dim Span{I, A, A2, . . .} ≤ n

9. Suppose A ∈ Mn(F) has characteristic polynomial

p(t) = (−1)ntn + cn−1tn−1 + · · ·+ c0

(a) Prove that if A is invertible, then

A−1 = − 1
c0

(
(−1)n An−1 + cn−1An−2 + · · ·+ c1 I

)
(b) Use this to find the inverse of T in Exercise 6.

(c) If A is upper-triangular and invertible, prove that A−1 is also upper-triangular.
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