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1 Vector Spaces

1.1 Introduction: What is Linear Algebra and why should we care?

Linear algebra is the study of vector spaces and linear maps between them. We’ll formally define these
concepts later, though they should be familiar from a previous class.
A function, or map, T : V → W between vector spaces is linear if for all vectors v1, v2 ∈ V and all
scalars λ, we have the properties:

(a) T(v1 + v2) = T(v1) + T(v2)

(b) T(λv1) = λT(v1)

Examples 1.1. You have seen many examples of these in your mathematical career.

1. T(x) = 3x defines a linear map T : R → R.

More generally, V = Rm, W = Rn, with T being multiplication by a real n × m matrix.

2. Differentiation: Let T = d
dx be the usual differential operator and V the vector space of differ-

entiable functions f : R → R. More generally, T could be a linear differential operator such as
T = d2

dx2 + 2x d
dx + x2 + 1 whence

T(y) = y′′ + 2xy′ + (x2 + 1)y

The standard methods for solving linear differential equations seen in a lower-division class are
based on linear algebra.

3. Integration: let V be a vector space of integrable functions then T( f ) =
∫ x

a f (t)dt defines a
linear map to a vector space of continuous functions.

The ubiquity of linear structures is one reason to study linear algebra. Another is that linear problems
often admit systematic techniques that give us at least a fighting chance of finding a solution. By
contrast, non-linear problems are typically much more difficult: if such can be solved, it is often due
to some trickery or luck.
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What makes linear problems easy? The core idea is to use simple solutions as building blocks to
construct more complex solutions. Here is a, hopefully familiar, example.

Example 1.2. The power law tells us how to integrate monomials. The linearity of integration
allows us to combine these building blocks to compute the integral of any polynomial:∫

x2 + 5x3 dx =
∫

x2 dx + 5
∫

x3 dx (linearity)

=
1
3

x3 +
5
4

x4 + c (power law)

By contrast, the integration of products is a non-linear problem. The fact that∫
ex sin x dx ̸=

[∫
ex dx

] [∫
sin x dx

]
and the resulting need for integration-by-parts is a major source of difficulty in freshman calculus.

A Brief Review of R2 and R3 In these standard spaces, we often visualize vectors as arrows.
In the picture, the vector v points from the origin O with co-ordinates (0, 0)
to the point P = (x, y). Writing i, j for the standard basis vectors, there are
several common notations for v:

v =
−→
OP =

(
x
y

)
= xi + yj = x

(
1
0

)
+ y

(
0
1

)
Column vector notation helps distinguish a vector from a point (x, y): we call
x and y the components of the column vector ( x

y ).

The vector space R2 is simply the set of all such vectors. There is no need for a
vector to have its tail at the origin, only direction and magnitude matter. In
R3 things are similar, a point has three co-ordinates and we need the three
standard basis vectors i, j, k.

Scalar multiplication involves lengthening or contracting a vector by a real
multiple: the vector tv has components tx and ty and we write

tv =
−→
OQ =

(
tx
ty

)
= txi + tyj

Note that if t < 0, then tv points in the opposite direction to v.

1

1
i

j

v

x

tyy

O

QP

tv

v

x

y

tx

ty

O

P

Q

Vector addition is defined by the parallelogram law. Simply add
components: if v1 =

( x1
y1

)
and v2 =

( x2
y2

)
, then

v1 + v2 :=
(

x1 + x2
y1 + y2

)
= (x1 + x2)i + (y1 + y2)j

The intuitive nose-to tail interpretation of vector addition is
immediate.

v
w

v + w
w

v

x1

y1

x2

y2

x1 + x2

y1 + y2
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Example 1.3 (Rotation and the standard basis). We finish by reviewing an approach you should
have seen in a previous course. By considering how to transform a basis, we obtain a complete
formula for a linear map.
Consider the function T : R2 → R2 which rotates a point 30° clockwise around the origin. You should
believe, though a proof is tricky at the present, that T is indeed linear. To discover a formula for T it
is enough to consider what it does to the standard basis {i, j} of R2.
This is because if v = ( x

y ) is any vector, then, by linearity

v = xi + yj =⇒ T(v) = xT(i) + yT(j)

Using the picture and a little trigonometry, you should be convinced
that that

T(i) =
(

cos 30°
− sin 30°

)
=

( √
3

2
− 1

2

)
T(j) =

(
sin 30°
cos 30°

)
=

(
1
2√
3

2

)

from which we obtain

T
(

x
y

)
=

( √
3

2 x + 1
2 y

− 1
2 x +

√
3

2 y

)
=

( √
3

2
1
2

− 1
2

√
3

2

)(
x
y

)

1y

1
xT(i)

T(j)

30°

30°

i

j

where we’ve written the final expression as a matrix multiplication.a

aThis is one of the advantages of column vector notation. Indeed one of the major goals of the course is to see that every
linear map between finite-dimensional vector spaces can be represented in such a fashion.

Because of linearity, we were able to completely determine T merely by understanding how it acted
on the basis vectors i and j. This property is not shared by non-linear functions. For instance, if |v|
returns the length of a vector v ∈ R2, then the function

f : R2 → R2 : v 7→
(
|v|2 + 1

)
v (∗)

is non-linear. Simply knowing that f (i) = 2i and f (j) = 2j is insufficient to completely understand
the function.

Exercises 1.1 1. Using the same approach as in Example 1.3, explicitly find a formula for the linear
map T : R2 → R2 which reflects in the line y = x.

2. A linear map is not the same thing as a straight line! Explain why the function f : x 7→ 3x + 2
is non-linear.

3. Give a reason why the function f : R2 → R2 defined in (∗) above is non-linear.

4. (a) Give an algebraic proof (use components!) of the distributive law λ(v + w) = λv + λw in
the vector space R2.

(b) Give a pictorial argument for the distributive law?

(Hint: Consider similar triangles or parallelograms and channel your inner Euclid. . . )

3



1.2 Vector Spaces: Basic Results, Examples and Subspaces

Vector spaces generalize the intuitive structure of R2, where identities such as commutativity

v + w = w + v

are geometrically obvious. The axioms of a vector space merely assert that such identities hold gen-
erally.

Definition 1.4. Let V be a non-empty set (elements vectors) and F a field (elements scalars), and
suppose we have two operations:

Vector Addition If v and w are vectors, we can form the sum v + w.

Scalar Multiplication If v is a vector and λ a scalar, we can form the product λv.

We say that V is a vector space over F if the following axioms are satisfied:a

G1: Closure under addition ∀v, w ∈ V, v + w ∈ V

G2: Associativity of addition ∀u, v, w ∈ V, (u + v) + w = u + (v + w)

G3: Identity for addition ∃0 ∈ V, such that ∀v ∈ V, v + 0 = v

G4: Inverse for addition ∀v ∈ V, ∃ − v ∈ V, such that v + (−v) = 0

G5: Commutativity of addition ∀v, w ∈ V, v + w = w + v

A1: Closure under scalar multiplication ∀v ∈ V, λ ∈ F, λv ∈ V

A2: Identity for scalar multiplication ∀v ∈ V, 1v = v

A3: Action of scalar multiplication ∀λ, µ ∈ F, v ∈ V, λ(µv) = (λµ)v

D1: Distributivity I ∀v, w ∈ V, λ ∈ F, λ(v + w) = λv + λw

D2: Distributivity II ∀v ∈ V, λ, µ ∈ F, (λ + µ)v = λv + µv

aThis is easier to remember if you’ve studied group theory: the ‘G’ axioms say that (V,+) is an Abelian group, the ‘A’
axioms say that the field F has a left action on V. The distributivity axioms explain how the two operations interact.

Notation You can use another notation (e.g. v⃗ or v) for abstract vectors, but use something: distin-
guishing vectors and scalars helps avoid common mistakes like dividing by a vector. This notation
might not be appropriate in certain examples, (e.g. polynomials, matrices) so take extra care.

Fields A field F is a set which behaves very like the real numbers under addition and multiplication.
In almost all examples, F will be either the real numbers R or the complex numbers C. The symbols 0
and 1 (e.g. axiom A2) refer to the additive and multiplicative identities in F. Be careful to distinguish
the scalar 0 ∈ F from the zero vector 0 ∈ V.

Inverses and subtraction Subtraction of vectors is taken to
mean addition of the inverse, namely

v − w := v + (−w)

In R2 this can be viewed pictorially.

v
w

−w

v − w

4



Essentially every example we will encounter falls into one of two classes.

Theorem 1.5 (Matrices & Sets of Functions). Let F be a field.

1. The set Mm×n(F) of m × n matrices with entries in F

Mm×n(F) =


 a11 · · · a1n

...
. . .

...
am1 · · · amn

 : aij ∈ F


forms a vector space over F under component-wise addition and scalar multiplication: given
matrices A = (aij) and B = (bij) and λ ∈ F, the ijth entries of the matrices A + B and λA are

(A + B)ij := aij + bij, (λA)ij := λaij (∗)

2. Let D be a set and V a vector space over F. The set of functions

F (D, V) = { f : D → V}

forms a vector space over F with addition and scalar multiplication defined bya

( f + g)(x) := f (x) + g(x), (λ f )(x) := λ( f (x))

aThe function f + g ∈ F (D, V) is defined by what it does to an element x ∈ D. In particular, f (x) ∈ V is not a function.
However, it is acceptable to write ‘the function f (x)’, just make sure you know that this is an abuse of notation.

To prove the theorem, each axiom (G1–5, A1–3, D1,2) should be checked explicitly for each part of
the theorem: this is tedious! For instance, axiom D2 may be verified for matrices as follows:(

(λ + µ)A
)

ij = (λ + µ)aij = λaij + µaij = (λA)ij + (µA)ij

Definitions (∗) provide the red equalities, while the blue is distributivity in the field F.

Examples 1.6. 1. The column vectors (n-tuples) are a special case: Fn := Mn×1(F). E.g., in R3

2

 1
0
−4

+ 7

−1
2
1

 =

 2
0
−8

+

−7
14
7

 =

−5
14
−1


2. In M2×3(C), we have(

1 i 0
−3 1 − i 2 + 3i

)
+ i
(

2 −3 1
3 − i 0 2

)
=

(
1 + 2i −2i i
−2 + 3i 1 − i 2 + 5i

)

3. A field is a vector space over itself! In particular, F (R, R) is a vector space. For instance, if f , g
are defined by f (x) = x2 and g(x) = sin x, then 4 f − 2g is the function given by

(4 f − 2g)(x) = 4x2 − 2 sin x

We’ll shortly restrict to certain types of functions (e.g. continuous functions, differentiable functions,
polynomials) and see that these also form vector spaces.
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Basic Results Here we gather several basic facts about vector spaces that you’ll use without think-
ing. Since these are not axioms, they do require proof.

Lemma 1.7. 1. Cancellation law: x + z = y + z =⇒ x = y

2. Uniqueness of Identity: The zero vector 0 posited in axiom G3 is unique.

3. Uniqueness of Inverse: Given v ∈ V, the vector −v posited in axiom G4 is unique.

4. Scalar multiplication by zero: ∀v ∈ V, we have 0v = 0.

5. Action of negatives: ∀v ∈ V, λ ∈ F, we have (−λ)v = −(λv).

6. Action on zero vector: ∀λ ∈ F, we have λ0 = 0.

Proof. We prove number 4, leaving the remainder as exercises: they are easiest if tackled in order!
Since 0 = 0 + 0 in F, apply axioms D2, G3, G5 and the cancellation law to see that

0v = (0 + 0)v = 0v + 0v (Distributivity D2)
=⇒ 0 + 0v = 0v + 0v (Identity G3 and Commutativity G5)
=⇒ 0 = 0v (Cancellation law)

Subspaces As in other areas of algebra (subgroup, subring, subfield, etc.) the prefix sub means that
an object is a subset, while retaining the algebraic structure of the original set.

Definition 1.8. Let V be a vector space over a field F.
A non-empty subset W ⊆ V is a subspace of V (written W ≤ V) if it is a vector space over the same
field F with respect to the same addition and scalar multiplication operations as V.
A subspace is proper if it is a proper subset (i.e., W ̸= V).
The trivial subspace of V is the point set {0}.

The subset approach allows us to quickly construct many more examples.

Example 1.9. Consider the line containing w =
(

3
2

)
∈ R2:

W :=
{

aw =

(
3a
2a

)
: a ∈ R

}
It is almost trivial, if tedious, to check that W satisfies the axioms
and is therefore a subspace of R2. For instance:

G1:
(

3a
2a

)
+

(
3b
2b

)
=

(
3(a + b)
2(a + b)

)
∈ W

by appealing to the distributivity laws in R.

W

w

3

2

Thankfully, as the next theorem shows, there is no need to check all the axioms to determine when
we have a subspace.
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Theorem 1.10. Suppose W is a non-empty subset of a vector space V over F. Then W is a subspace
of V if and only if it is closed under addition and scalar multiplication:a

G1: ∀w1, w2 ∈ W, we have w1 + w2 ∈ W.

A1: ∀w ∈ W, λ ∈ F, we have λw ∈ W.
aThat w1 + w2 and λw lie in W and not just V is what makes these genuine conditions.

There are two common variants of this result: feel free to use these in examples if you prefer.

• Explicitly verify axiom G3 (0V ∈ W) instead of checking the non-emptiness of W. You still need
to check that W is a subset of V!

• Combine the closure axioms into a single statement: ∀x, y ∈ W, λ ∈ F, we have λx + y ∈ W.

Proof. If W is a subspace, then it is a vector space and so axioms G1 and A1 hold as written.
Conversely, assume that W is a non-empty subset of V satisfying G1 and A1. Reread the axioms
(Definition 1.4) and observe that all except perhaps G1, G3, G4 and A1 hold on any subset of V.
Under our assumptions therefore, it remains only to verify G3 and G4.

G3: Choose any w ∈ W. By Lemma 1.7 (part 4) and axiom A1 (for W!), we see that the zero vector
of V satisfies

0V = 0w ∈ W

Since 0V satisfies axiom G3 for V, it necessarily does on any subset: we therefore have 0W = 0V .

G4: Given w ∈ W, let −w ∈ V be its additive inverse in V. Now observe that

−w = (−1)w ∈ W

by Lemma 1.7 (part 5) and axiom A1.

Examples 1.11. 1. Returning to Example 1.9, recall that we already checked axiom G1. Moreover,

• 0 = 0w ∈ W so that W is non-empty.
• A1: λ(aw) = (λa)w ∈ W by axiom A3.

so that W is a subspace of R2. Alternatively, if λ ∈ R and x, y ∈ W, then ∃a, b ∈ R for which

λx + y = λaw + bw = (λa + b)w ∈ W

2. For any field F, let Pn(F) = {a0 + a1x + · · ·+ anxn : ai ∈ F} be the set of polynomials of degree
≤ n with coefficients in F. By considering axioms G1 and A1, this is plainly a subspace of the
space of functions F (F, F):

λ(a0 + a1x + · · ·+ anxn) + (b0 + b1x + · · ·+ bnxn) = (a0 + b0) + · · ·+ (an + bn)xn

Non-emptiness is guaranteed by considering the zero polynomial 0(x) = 0 + 0x + · · ·+ 0xn.

More generally, if n ≤ m, then Pn(F) ≤ Pm(F) ≤ P(F), where the last denotes the space of all
polynomials of any degree.

7



3. If U ⊆ R is an interval, then V = F (U, R) is a vector space over R. The subset C(U, R) of
continuous functions is a subspace of V. Indeed, as is verified in any analysis course,

If f , g : I → R are continuous and λ ∈ R, then λ f + g : I → R is continuous.

This also extends to sets of differentiable functions, etc.

4. The trace tr : Mn(F) → F of an n × n matrix is defined by summing the main diagonal:

tr A =
n

∑
i=1

aii = a11 + a22 + · · ·+ ann

The subset of trace-free matrices is denoted

sln(F) = {A ∈ Mn(F) : tr A = 0}

It is easy to check that sln(F) ≤ Mn(F):

tr(λA + B) =
n

∑
i=1

λaii + bii = λ
n

∑
i=1

aii +
n

∑
i=1

bii = λ tr A + tr B = 0

Intersections and Direct Sums Since vector spaces are sets, we may take intersections. . .

Theorem 1.12. If V and W are subspaces of some vector space U, then their intersection V ∩W is a
subspace of both V and W.

Proof. Since V and W are subspaces of U, they both contain 0 and so V ∩ W is non-empty.
Now suppose x, y ∈ V ∩ W and λ ∈ F. Since V and W are both vector spaces, they are closed under
addition and scalar multiplication (in U!): in particular,

x + y ∈ V, x + y ∈ W, λx ∈ V, λx ∈ W

But then x + y ∈ V ∩ W and λx ∈ V ∩ W, whence V ∩ W is closed and thus a subspace.

Example 1.13. Suppose that

V = {xi + zk : x, z ∈ R}
W = {yj + zk : y, z ∈ R}

are the xz- and yz-planes respectively. Plainly, V and W
are subspaces of R3 with intersection the z-axis

V ∩ W = {zk : z ∈ R}
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}


////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();





Attempting the same thing for unions results in a problem.
For a simple counterexample, let

V = {xi : x ∈ R} W = {yj : y ∈ R}

be the x- and y-axes in R2, whose intersection is the trivial subspace
V ∩ W = {0}. Their union

V ∪ W = {xi, yj : x, y ∈ R}

is not a subspace of R2 since it is not closed under addition:

i ∈ V and j ∈ W but i + j ̸∈ V ∪ W

Instead we search for the smallest vector space containing V ∪ W.

W

Vi

j
i + j

Definition 1.14. Suppose V and W are subspaces of U. Their sum is the set

V + W := {v + w : v ∈ V, w ∈ W}

In addition, if V ∩ W = {0}, we call this the direct sum and write V ⊕ W.

Examples 1.15. 1. The x- and y-axes, V = {xi : x ∈ R} and W = {yj : y ∈ R} are clearly subspaces
of R2 with trivial intersection. It is immediate that

V ⊕ W = {xi + yj : x, y ∈ R} = R2

2. More generally, let V = {sv : s ∈ R} and W = {tw : t ∈ R} be
distinct, non-trivial subspaces of R2 (i.e. v, w are non-parallel).
Observe:

• If V ∩ W ̸= {0}, then ∃s, t ̸= 0 such that sv = tw, whence
v and w would be parallel: contradiction.

• Writing v = ( a
b ) and w = ( c

d ), we see that for any given
u = ( x

y ) ∈ R2,

u = sv + tw ⇐⇒
(

x
y

)
=

(
a c
b d

)(
s
t

)
⇐⇒

(
s
t

)
=

1
ad − bc

(
d −c
−b a

)(
x
y

)

V

sv

v
W

tww

u = sv + tw

Since v, w are non-parallel, we are not dividing by zero: every u can be written in the
form sv + tw and so R2 = V + W.

Putting both parts together, we conclude that R2 = V ⊕ W is a direct sum.

Indeed we see that every u ∈ R2 can be written uniquely in terms of the subspaces: as the next
result shows, this is a defining property of direct sums.
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Theorem 1.16. Let V, W be subspaces of U with trivial intersection. Then:

1. V ⊕ W is a subspace of U.

2. V and W are subspaces of V ⊕ W.

3. If X is a subspace of U such that both V and W are subspaces of X, then V ⊕ W ≤ X.

4. U = V ⊕ W ⇐⇒ ∀u ∈ U, ∃unique v ∈ V and w ∈ W such that u = v + w.

The proofs are exercises. Note how the third property says that V ⊕W is the smallest space containing
V and W, while the fourth says that direct sums are synonymous with unique decompositions.

Exercises 1.2 1. Let S = {0, 1} and F = R. In the vector space of functions F (S, R), let

f (t) = 2t + 1, g(t) = 1 + 4t − 2t2, h(t) = 5t + 1

Show that f = g and f + g = h.

2. (a) If p(x) = 2x + 3x2 and q(x) = 4 − x2, compute the polynomial p(x) + 3q(x).
(b) Explain why the set of degree two polynomials with coefficients in R is not a vector space.
(c) Prove explicitly that P1(R) is a subspace of P3(R).

3. Prove parts 2, 3 and 6 of Lemma 1.7.

4. Consider the vector space C2 = {( w
z ) : w, z ∈ C} over the field C of complex numbers.

(a) Show that v =
( i

2+3i
)

and w =
( 1+2i

7+4i

)
are parallel.

(b) C2 is automatically a vector space over C. Prove that it is a vector space over R.

5. Is Mm×n(R) a vector space over the rational numbers Q? Explain.

6. Let V = {(a1, a2) : a1, a2 ∈ R}. For (a1, a2), (b1, b2) ∈ V and λ ∈ R, define

(a1, a2) + (b1, b2) := (a1 + 2b1, a2 + 3b2) and λ(a1, a2) = (λa1, λa2)

Is V a vector space over R with respect to these operations? Explain.

7. Let V = R2, define vector addition as usual and scalar multiplication (by λ ∈ R) by

λ

(
x
y

)
:=
(

λx
λ−1y

)
if λ ̸= 0 or

(
0
0

)
if λ = 0

Is V a vector space with respect to these operations? Why/why not?

8. Prove or disprove:

(a) V := {
(

4a
−a
)

: a ∈ R} is a subspace of R2.
(b) W := {

(
4a+1
−a
)

: a ∈ R} is a subspace of R2.

(c) X :=
{( 4a+b

−a
2a−b

)
: a, b ∈ R

}
is a subspace of R3.

9. Let V be the set of differentiable real-valued functions with domain R. Prove that V is a sub-
space of the set of functions F (R, R).
(You may quote anything you like from elementary calculus without proof )
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10. With reference to Theorem 1.10, prove that properties G1 & A1 are equivalent to the combined
closure property: ∀x, y ∈ W, λ ∈ F, we have λx + y ∈ W.

11. (a) Let V = {xi : x ∈ R} and W = {yj + zk : y, z ∈ R} be subspaces of R3. Prove that
V ⊕ W = R3.

(b) Repeat part (a) but this time with V = {x(i + j) : x ∈ R}.

12. (a) Prove all four parts of Theorem 1.16.
(b) If we drop the assumption that V and W have trivial intersection, which parts of Theorem

1.16 must be true for the sum V + W.

13. A matrix A is symmetric if it equals its transpose: AT = A. It is skew-symmetric if AT = −A. Let
S be the set of symmetric matrices and K the set of skew-symmetric matrices in M2(R).

(a) Show that S and K are subspaces of M2(R).
(b) Prove or disprove: M2(R) = S ⊕ K.
(c) Does your argument extends to Mn(R) and, if you’ve studied fields, to Mn(F)?

14. Let Z5 = {0, 1, 2, 3, 4} together with addition and multiplication modulo 5.

(a) Prove that every non-zero element of Z5 has a multiplicative inverse (Z5 is a field): for all
x ∈ Z5 \ {0}, there exists y ∈ Z5 such that xy = 1.

(b) By part (a), Zn
5 is a vector space. Evaluate the expression 4

(
3
2

)
+ 2

(
1
4

)
∈ Z2

5. For any
n ∈ N, how many vectors are there in Zn

5? (What is the cardinality of Zn
5?)

15. Let V × W = {(v, w) : v ∈ V, w ∈ W} be the Cartesian product of spaces V, W over F.

(a) (Briefly!) Argue that V × W is a vector space over F with respect to the operations

(v1, w1) + (v2, w2) := (v1 + v2, w1 + w2) λ(v, w) := (λv, λw)

(b) Verify that V̂ := {(v, 0W) : v ∈ V} and Ŵ := {(0V , w) : w ∈ W} are subspaces of V × W
and that V̂ ⊕ Ŵ = V × W.

(V × W is an alternative definition of the direct sum V ⊕ W, which should be familiar if you’ve
seen direct products in group theory.)

16. (Optional: should be familiar if you’ve studied group theory) Let W be a subspace of V over
F. For any v ∈ V, define the coset of W containing v to be the set

v + W := {v + w : w ∈ W}
(a) If V = R3 and W = Span{i, j}, describe the coset k + W in words.
(b) Let V be a a general vector space. Prove that v +W is a subspace of V if and only if v ∈ W.
(c) Prove that v1 + W = v2 + W ⇐⇒ v1 − v2 ∈ W.

(d) Define the quotient space V
/

W
= {v + W : v ∈ V} to be the set of cosets of W in V together

with the operations

(v1 + W) + (v2 + W) := (v1 + v2) + W λ(v + W) := λv + W
Prove that addition and scalar multiplication are well-defined, and (briefly) convince your-
self that V

/
W

is a vector space over F under these operations.
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1.3 Linear Combinations & Linear Independence

In this section we consider what vectors we can generate from a given collection using only the vector
space operations af addition and scalar multiplication.

Definition 1.17. Let S be a non-empty subset of a vector space V over a field F. A linear combination
of vectors in S is any vector of the form

a1v1 + · · ·+ anvn (∗)

where each vi ∈ S and each ai ∈ F. The span of S is the set of all linear combinations of vectors in S:

Span S = {a1v1 + · · ·+ anvn : n ∈ N, a1, . . . , an ∈ F, v1, . . . , vn ∈ S}

By convention, Span ∅ := {0} is the trivial subspace.
Important: A linear combination contains finitely many terms—no infinite sums!

Our primary goal of this chapter is to identify the smallest possible spanning sets for a vector space:
such a set will be called a basis. The full discussion is difficult and length; for the present, we consider
a few simple examples of linear combinations and spanning sets.

Examples 1.18. 1. In P2(R), the vector p(x) = 2 − 3x2 is a linear combination of the vectors
q(x) = 2x − x2 and r(x) = 1 − x − x2, since

p = q + 2r

2. In Example 1.9, W = Span{w}. Since this is the span of a single vector, it is common to abuse
notation and write Span w. In this notation, and following Definition 1.14, we see that

Span{v, w} = Span v + Span w

3. Let S = {v, w} ⊆ R3 where v =
( 1

2
−1

)
and w =

( −1
1
2

)
.

Then

Span S =

a

 1
2
−1

+ b

−1
1
2

 : a, b ∈ R


This is the plane through the origin ‘spanned by’ v and w:
hence the use of the word span!

4. (a) Let S = {i, k} ⊆ R3. The span of S is the xz-plane

Span S = {ai + bk : a, b ∈ R}
(b) If T = S ∪ {3i − 2k} = {i, k, 3i − 2k} ⊆ R3, then Span T remains the xz-plane. The third

vector 3i − 2k is redundant since it is a linear combination of the first two. Indeed

ai + bk + c(3i − 2k) = (a + 3c)i + (b − 2c)k ∈ Span{i, k}
Part of our concern in this chapter is to more carefully consider such redundancies.
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The examples should suggest the following.

Lemma 1.19. If S is a subset of a vector space V, then Span S is a subspace of V.

Proof. This is trivial if S = ∅. Otherwise, we follow the criteria in Theorem 1.10. Let x, y ∈ Span S
and λ ∈ F. Then ∃m, n ∈ N, x1, . . . , xm, y1, . . . , yn ∈ S, and a1, . . . , am, b1, . . . , bn ∈ F such that

x = a1x1 + · · ·+ amxm, y = b1y1 + · · ·+ bnyn

But then

λx + y = λa1x1 + · · ·+ λamxm + b1y1 + · · ·+ bnyn ∈ Span S

Generating or Spanning Sets Part of our goal is to identify subsets S, particularly small subsets, of
a vector space such that Span S is the entire space.

Definition 1.20. Let S be a subset of a vector space V. If Span S = V, we say that S is a spanning or
generating set for V. Alternatively, we say that S spans V or S generates V.

Examples 1.21. 1. S = {i, j} generates R2, since every vector v ∈ R is a linear combination
v = xi + yj of vectors in S. Indeed R2 is essentially defined as Span S!

2. Many vector spaces are defined via a spanning set: e.g. P3(R) := Span{1, x, x2, x3}.

3. Consider S = {1 − 2x2, 1 + x − x2, 1 + 2x + x3} ⊆ P3(R).

(a) The polynomial x3 lies in Span S.

For this, we need to find coefficients a, b, c such that

a(1 − 2x2) + b(1 + x − x2) + c(1 + 2x + x3) = x3

By equating the coefficients of 1, x, x2 and x3 is it enough for us to solve a linear system
a + b + c = 0
b + 2c = 0
−2a − b = 0
c = 1

⇐⇒ (a, b, c) = (1,−2, 1)

(b) 1 + 3x + x3 ̸∈ Span S. It follows that S does not generate P3(R).

This time, we need to show that there are no coefficients a, b, c such that

a(1 − 2x2) + b(1 + x − x2) + c(1 + 2x + x3) = 1 + 3x + x3 ⇐⇒


a + b + c = 1
b + 2c = 3
−2a − b = 0
c = 1

Substituting c = 1 in the second equation yields b = 1, however the remaining equations
are now a + 2 = 1 and −2a − 1 = 0 which are inconsistent.
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4. S = {1 + x2, 2 − x2, x, 1 + 4x} generates the vector space P2(R).

Given any a + bx + cx2 ∈ P2(R) we need to see that there exist g, h, j, k ∈ R such that

a + bx + cx2 = g(1 + x2) + h(2 − x2) + jx + k(1 + 4x)

= g + 2h + k + (j + 4k)x + (g − h)x2

By equating coefficients, this amounts to finding a solution (g, h, j, k) (as functions of a, b, c) to
the underdetermined linear system

g + 2h + k = a
j + 4k = b
g − h = c

Only one solution is required, and k = 0, j = b, g = 1
3 (a + 2c), h = 1

3 (a − c) does the trick.

Alternatively, you could try to explicitly construct the elements 1, x, x2 from those of S: in this
situation it is fairly easy to do by inspection, e.g.,

1 = (1 + 4x)− 4x, x = x, x2 =
2
3
(1 + x2)− 1

3
(2 − x2)

It follows that {1, x, x2} ⊆ Span S and so P2(R) = Span{1, x, x2} ⊆ Span S. Since, plainly,
Span S ⊆ P2(R) we have equality: Span S = P2(R).

Aside: row operations review It should be revision, but the solution to the above linear system
would likely have been found very slowly in a previous class. Here are some of the details. The
required system can be put in augmented matrix form:

1 2 0 1
0 0 1 4
1 −1 0 0




g
h
j
k

 =

a
b
c

↭
 1 2 0 1 a

0 0 1 4 b
1 −1 0 0 c


Applying row operations, we can put this in (reduced) row echelon form: 1 0 0 1

3
1
3 (a + 2c)

0 1 0 1
3

1
3 (a − c)

0 0 1 4 b


There is a free variable (k) here, but all solutions can easily be read off:

g =
1
3
(a + 2c)− 1

3
k, h =

1
3
(a − c)− 1

3
k, j = b − 4k

Choosing k = 0 gives the solution referenced above.
Linear systems can always be tackled using augmented matrices, but it is encouraged to avoid them
if you can: see, e.g., the alternative method for the last example.
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Linear Dependence & Independence: when is a spanning set larger than necessary?

If w = 2v, then Span{v, w} = Span v; for the purpose of spanning a subspace, the vector w is
therefore redundant. To generalize this idea, we essentially have to extend the notion of parallel.

Definition 1.22. A finite non-empty subset S = {v1, . . . , vn} of a vector space is linearly dependent if

∃ai ∈ F not all zero, for which a1v1 + · · ·+ anvn = 0

Such an equation is a linear dependence.a

An infinite set is linearly dependent if it has as least one non-empty linearly dependent subset.

aThe not all zero condition is crucial! You can always write 0 = 0v1 + · · ·+ 0vn (a trivial representation of 0), but this tells
you nothing about the vectors v1, . . . , vn. A linear dependence is a non-trivial representation of the zero vector!

Examples 1.23. 1. Vectors v, w are linearly dependent (i.e. {v, w} is linearly dependent) if and only
if they are parallel.

2. v1 =
(

2
1
0

)
, v2 =

(
1
1
2

)
and v3 =

(
7
5
6

)
are linearly dependent since

2v1 + 3v2 − v3 = 0

3. The infinite set S = {( x
y ) : y > 1} is linearly dependent in R2. For instance {

(
0
2

)
,
(

0
3

)
} is a

finite linearly dependent subset of S, since 3
(

0
2

)
− 2

(
0
3

)
=
(

0
0

)
.

We now state the negation of the definition.

Definition (1.22 cont.). A finite subset S = {v1, . . . , vn} of a vector space is linearly independent if

∀ai ∈ F, a1v1 + · · ·+ anvn = 0 =⇒ a1 = · · · = an = 0

An infinite set is linearly independent if all of its finite subsets are linearly independent.

Examples 1.24. 1. The set S = {
(

2
1

)
,
(

3
−5
)
} is linearly independent in R2 since

a
(

2
1

)
+ b

(
3
−5

)
=

(
0
0

)
=⇒

{
2a + 3b = 0
a − 5b = 0

=⇒ a = b = 0

2. The empty set ∅ is trivially linearly independent since there is no condition to check.

3. Consider the set S = {1 − x2,−x + 2x2, 1 + 2x − x2} in P2(R). Attempting to find a linear
dependence is equivalent to finding a non-trivial solution (a, b, c) to a system of linear equations

a(1 − x2) + b(−x + 2x2) + c(1 + 2x − x2) = 0 ⇐⇒


a + c = 0
−b + 2c = 0
−a + 2b − c = 0

Since the only solution is trivial (a, b, c) = (0, 0, 0), the set S is linearly independent.

4. S = {1, x, x2, x3, . . .} is a linearly independent subset of P(R): we leave this as an exercise.
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We consider shrinking or enlarging certain sets of vectors. Prove the next result yourself.

Lemma 1.25. Suppose S1 ⊆ S2 are subsets of a vector space. If S1 is linearly dependent,a so is S2.

aEquivalently (the contrapositive): if S2 is linearly independent, so is S1.

Now turn the lemma on its head: if S2 is linearly independent, when it is possible to find a larger
linearly independent set S2 ⊇ S1? What follows is one of the most important results in the course.

Theorem 1.26. Suppose that S is a linearly independent subset of V and that v ̸∈ S is given. Then

S ∪ {v} is linearly independent ⇐⇒ v ̸∈ Span S

Be careful reading the proof: we use the contrapositive and prove both directions simultaneously!

Proof. By definition, S ∪ {v} is linearly dependent if and only if there exist finitely many vectors
v1, . . . , vn ∈ S and scalars a, a1, . . . , an (not all zero), such that

av + a1v1 + · · ·+ anvn = 0 (∗)

Plainly a ̸= 0, for otherwise S would be linearly dependent. By dividing through all coefficients by
−a we therefore see that (∗) is equivalent to

v = b1v1 + · · ·+ bnvn ⇐⇒ v ∈ Span S

Examples 1.27. 1. Let S = {i} = {
(

1
0

)
} and v = ( a

b ). Then

{i, v} linearly independent ⇐⇒ v ̸∈ Span{i} ⇐⇒ v not parallel to i ⇐⇒ b ̸= 0

2. Plainly S = {v, w} =
{( 1

2
−1

)
,
( −1

1
2

)}
is linearly independent (recall Example 1.18.3).

(a) Let u =
( 1

−3
0

)
: we check that u ̸∈ Span S. If it were, there would exist a, b ∈ R such that

u = a

 1
2
−1

+ b

−1
1
2

 =⇒
 1
−3
0

 =

 1 −1
2 1
−1 2

(a
b

)

which has no solutions. It follows that {u, v, w} is linearly
independent. Indeed Span{u, v, w} = R3.

(b) If we let d =
(

0
6
2

)
, then

d = 2v + 2w

whence d ∈ Span{v, w} and so {d, v, w} is linearly de-
pendent.
In the picture, d lies in the plane spanned by v, w while u
does not.
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The Theorem should be intuitive in R2 and R3 where planes and lines are easy to visualize. Ana-
logues abound elsewhere: indeed the following are reasonable statements according to the RGB
(additive) theory of colors,

purple ∈ Span{red, blue}, brown ̸∈ Span{red, blue}
For instance purple, red and blue are not independent colors.

Exercises 1.3 1. In R3, let v =
(

1
1
2

)
, w =

( 1
−1
1

)
and x =

(
1
7
5

)
. Show that x ∈ Span{v, w}.

2. For the following lists of polynomials in P3(R), determine whether f can be expressed as a
linear combination of g and h.

(a) f = 4x3 + 2x2 − 6, g = x3 − 2x2 + 4x + 1, h = 3x3 − 6x2 + x + 4
(b) f = x3 − 8x2 + 4x, g = x3 − 2x2 + 3x − 1, h = x3 − 2x + 3

3. Determine whether the vectors A, B ∈ M2(R) lie in the span of S:

A =

(
1 2
−3 4

)
, B =

(
1 0
0 1

)
S =

{(
1 0
−1 0

)
,
(

0 1
0 1

)
,
(

1 1
0 0

)}
4. Determine whether the set S = {1 + x + x2, x − x2, 2 + 3x2} generates P2(R).

5. Which of the following sets are linearly independent? Prove your assertions.

(a) {2, 3 − x, 1 − 2x2} in P2(R)

(b) {1, x2 − x, x2 + x, x2} in P2(R)

(c) {sin(x), cos(x), tan(x)} in C
(
(−π

2 , π
2 ), R

)
(recall Example 1.11.3 for the notation)

(d) {cos2(x), sin2(x), cos(2x)} in C(R, R)

6. Suppose that S = {v} is a linearly dependent set. What is v?

7. Let v1, . . . , vn be linearly independent vectors in V. Prove that Span{v2, . . . , vn} ̸= V.

8. Explicitly verify the claim on page 16 that Span{u, v, w} = R3.

9. Show that the functions f , g defined by f (x) = 2x and g(x) = |x| are linearly independent in
the vector space C([−1, 1], R), but linearly dependent in C([0, 1], R).

10. Suppose that c is a constant, and consider the continuous functions f , g ∈ C(R, R) defined by

f (x) = cos(x + c), g(x) = 2 sin x

For what values of c are the functions linearly independent? Draw a picture of what happens.

11. Prove that Span S is the intersection of all subspaces of V which contain S.

12. Justify Example 1.24.4: the infinite set {1, x, x2, . . .} is linearly independent.

13. Let X, Y, Z be subsets of a vector space V. Prove that:

(a) Span(X ∪ Y) = Span X + Span Y;
(b) Span(X ∪ Y) = Span X ⇐⇒ Y ⊆ Span X
(c) If y ∈ Z, then Span(Z \ {y}) = Span Z ⇐⇒ y ∈ Span(Z \ {y})
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1.4 Bases and Dimension

We now come, arguably, to the most important definition of the course.

Definition 1.28. A basis of a vector space is a linearly independent spanning set.

Our main goals are to see that every vector space has a basis and that all bases of the same space have
the same number of elements, what we’ll call the dimension.

Standard Bases Many vector spaces have commonly used standard bases.

Vector Space V Standard Basis β

R2 {i, j}
R3 {i, j, k}
Fn {e1, . . . , en} where ei has ith entry 1 and the rest 0
Mm×n(F) {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} where Eij has ijth entry 1 and

remaining entries 0
Pn(F) {1, x, x2, . . . , xn}
P(F) {1, x, x2, x3, . . .}

Examples 1.29. 1. The standard bases of P3(R) and M2(R) are, respectively,

{1, x, x2, x3} and {E11, E12, E21, E22} =

{(
1 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
,
(

0 0
0 1

)}
2. The above spaces have other bases! For example β = {x, x − 1, 1 + x2} is a basis of P2(R):

verification of the following should be straightforward:

• β is linearly independent: ax + b(x − 1) + c(1 + x2) = 0 =⇒ a = b = c = 0

• β spans P2(R): ∀s, t, u, ∃a, b, c such that s + tx + ux2 = ax + b(x − 1) + c(1 + x2)

What matters is that you are comfortable transforming the definitions into algebra!

3. Following the convention that Span ∅ = {0}, the empty set is a basis of the trivial space {0}.

The Unique Co-ordinate Representation We first discuss one of the primary uses of a basis: the
representation of vectors in terms of co-ordinates.

Definition 1.30. Let β = {v1, . . . , vn} be a basis of V over F and suppose v ∈ V is given. The
co-ordinate representation of v with respect to β is the column vector

[v]β :=

a1
...

an

 ∈ Fn where v = a1v1 + · · ·+ anvn

To check that this is well-defined, we need to make sure that each vector v has exactly one co-ordinate
representation. We’ll deal with this in Theorem 1.32, after seeing an example.
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Example 1.31. In P2(R), consider the bases α = {1, x, x2} and β = {x, x − 1, 1 + x2}, and the vector

p(x) = 3x − 2(x − 1) + 5(1 + x2) = 7 + x + 5x2

The co-ordinate representations with respect to the two bases are then:

[p]α =

7
1
5

 , [p]β =

 3
−2
5


The advantage of co-ordinates is that we can easily invoke matrix methods. The challenge is to keep
in mind the basis used in the conversion, so we can properly convert back once we’re done!

We now verify the uniqueness of co-ordinate representations. Amazingly, this property essentially
characterises the concept of a basis.

Theorem 1.32. Let β = {v1, . . . , vn} be a non-empty finite subset of a vector space V. Then β is a
basis if and only if each v ∈ V can be written as a unique linear combination

v = a1v1 + · · ·+ anvn (∗)

Compare this to Theorem 1.16: we are really saying that V = Span v1 ⊕ · · · ⊕ Span vn.

Proof. (⇒) If β is a basis, then V = Span β and so every vector can be expressed in the form (∗).
Now suppose ∃v ∈ V with at least two distinct representations:

v = a1v1 + · · ·+ anvn = b1v1 + · · ·+ bnvn

It follows that

(a1 − b1)v1 + · · ·+ (an − bn)vn = 0

is a linear dependence on β. Contradiction.
(⇐) Conversely, suppose β is not a basis. There are two possibilities:

(a) β does not generate V. In this case, ∃v ̸∈ Span β with no representation.

(b) β generates V but is linearly dependent. In this case there exists a linear dependence

c1v1 + · · ·+ cnvn = 0

from which the zero vectora has at least two representations!

Either way, there exists some v ∈ V without a unique representation.

a0 = 0v1 + · · · 0vn. Indeed any v ∈ V will have multiple representations in this case.

We don’t typically refer to co-ordinates with respect to infinite bases, but the Theorem can be rephrased
so that the uniqueness of representation holds. We will return to co-ordinate representations and their
relationship to linear maps and matrix multiplication in the next chapter.
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Existence of Finite Bases

If we attempt to enlarge a basis β of V by adding a new vector v ̸∈ β, a quick appeal to Theorem 1.26
(let S = β) shows that

v ∈ Span β (= V) =⇒ β ∪ {v} is linearly dependent

Otherwise said, a basis is a maximal linearly independent set. This suggests a simple looped algorithm:

1. Start with a linearly independent set X (even X = ∅ will do!).

2. Does there exist a vector s such that X ∪ {s} is linearly independent?

Yes: Repeat step 2 with X replaced with X ∪ {s}.

No: Stop. We have a basis.

The algorithm has two problems: how do we find a suitable s, and how do we know that the algo-
rithm will terminate? Both these problems can be addressed by restricting to vector spaces spanned
by a finite set.

Definition 1.33. A vector space V is finite-dimensional if it has a finite spanning set: if there exists a
finite subset S ⊆ V such that Span S = V.

Theorem 1.34 (Existence of a Basis). Every finite-dimensional vector space has a basis.
More specifically, suppose X and S are subsets of V such that:

• S is a finite spanning set for V;

• X is a linearly independent subset of S.

Then there exists a basis β of V such that X ⊆ β ⊆ S: in particular β is a finite set.

Proof. Suppose V is non-trivial, for otherwise ∅ is a basis (X = ∅ and S = ∅ or {0}).
Let m = |X| and n = |S| be the cardinalities so that m ≤ n, and label X = {x1, . . . , xm}. Then

X ⊆ S =⇒ Span X ⊆ Span S = V

Loop: If Span X = Span S = V, we are done: X is a basis.
Otherwise, ∃sm+1 ∈ S such that sm+1 ̸∈ Span X, whence (Theorem 1.26)

X ∪ {sm+1} = {x1, . . . , xm, sm+1} is linearly independent.

Now repeat the loop with X ∪ {sm+1} in place of X (induction).

The process must terminate with a basis in at most n − m steps since S is a finite spanning set.
To establish the primary claim, simply choose any x ∈ S and let X = {x}.
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The finite spanning set S was crucial in resolving the problems with our looped algorithm: it pro-
vided a finite list of vectors from which to choose, and guaranteed that only finitely many loops
were possible thus forcing the algorithm to terminate.1 The existence of bases for infinite-dimensional
spaces (no finite spanning sets) is more technical and will be outlined in the next section.

Example 1.35. We follow the algorithm in R3, omitting explicit calculations for brevity.

S = {s1, s2, s3, s4, s5, s6} =


1

2
0

 ,

2
1
1

 ,

 1
−1
1

 ,

5
4
2

 ,

0
1
3

 ,

1
1
4


1. Let X = {s1}. Since s2 ̸∈ Span X we conclude that {s1, s2} is linearly independent.

2. {s1, s2} does not span R3 so we need another vector.

• s3 = s2 − s1 ∈ Span{s1, s2} so we reject s3

• s4 = s1 + 2s2 ∈ Span{s1, s2} so we also reject s4

• We accept s5 since s5 ̸∈ Span{s1, s2}.

3. β := {s1, s2, s5} is linearly independent and spans R3: it is a suitable basis.

The Exchange Theorem and its Consequences

Our next goal is comparison of the cardinalities of spanning sets and linearly independent set (and
thus bases), the key to which is the Exchange (or Replacement) Theorem. Take your time, since this is
the trickiest result of the course so far.

Theorem 1.36 (Exchange Theorem). Let V be a finite-dimensional vector space. If S is a finite
spanning set and X is a linearly independent subset of V, then |X| ≤ |S|. More specifically,

∃T ⊆ S such that |T| = |X| and Span(X ∪ (S \ T)) = V

A few observations before we see the proof.

• The hypotheses are the same as for the Existence Theorem (1.34), except that X need not be a
subset of S. The result therefore allows us to compare unrelated subsets.

• The result shows that every linearly independent set is no larger than every finite spanning set.
In particular, we obtain the important fact that every linearly independent subset and thus basis is
finite!

• The subset T is sometimes called the exchange, since the theorem essentially exchanges T with
X while preserving the span.

• Since the proof depends on a tricky induction, it is strongly recommended to work through an
example (say Example 1.37) while reading. The exchange is often easy to compute when X and
S are small. If you really want to understand the proof, make up more examples! Alternatively,
simply skip the proof and come back later; while important, it is technical and hard to use
directly in examples.

1Imagine applying the algorithm X = {1} and S = {1, x, x2, . . .} in the space of polynomials P(R): what happens?
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Proof. Denote n = |S| and m = min{n, |X|}: our eventual goal is to see that |X| = m, but at present
we don’t know whether X is finite!
Consider a subset {x1, . . . , xm} ⊆ X. We prove the following claim by induction:

∀k ∈ {0, 1, . . . , m}, ∃s1, . . . , sk ∈ S such that Span{x1, . . . , xk, sk+1, . . . , sn} = V (†)

Base case If k = 0 then the claim is trivial for S spans V.

Induction step Suppose the claim holds for some k < m. Since {x1, . . . , xk, sk+1, . . . , sn} spans V, there
exist coefficients ai, bj such that

xk+1 = a1x1 + · · ·+ akxk + bk+1sk+1 + · · ·+ bnsn (∗)

Since (∗) is a linear dependence, the independence of X shows that at least one bj ̸= 0: WLOG
assume bk+1 ̸= 0. Since

sk+1 = −b−1
k+1(a1x1 + · · ·+ akxk − xk+1 + bk+2sk+2 + · · ·+ bnsn)

we may eliminate sk+1 from any linear combination describing an element of V at the cost of
including xk+1: we conclude that

V = Span{x1, . . . , xk+1, sk+2, . . . , sn}

By induction, the claim is proved. Taking k = m and setting T = {s1, . . . , sm} we see that

V = Span
(
{x1, . . . , xm} ∪

(
S \ T

))
Now suppose, for contradiction, that |X| > m. Then n = m and ∃xm+1 ∈ X. Since (†) holds for
k = m = n, we see that

xm+1 ∈ V = Span{x1, . . . , xm}

which contradicts the linear independence of X.
We complete the proof by observing that |X| = m ≤ n = |S|.

Example 1.37. Let V = R3, S = {i, j, k}, X =
{(

2
3
5

)
,
( 6

9
12

)}
and apply the induction step twice:

1. Since x1 = 2i + 3j + 5k and the coefficient of i is non-zero, we choose s1 = i. Observe that
Span{x1, j, k} = Span S = R3.

2. Now find the coefficients of x2 with respect to {x1, j, k}: this might need a little augmented
matrix work, but we see that

x2 =

 6
9
12

 = 3x1 + 0j − 3k

so we choose s2 = k. Again we have Span{x1, x2, j} = R3. The exchange is therefore T = {i, k}.
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Armed with the Exchange Theorem, the key facts come quickly and easily:

Corollary 1.38. Given a finite-dimensional vector space:

1. (Extension Theorem) Any linearly independent subset may be extended to a basis.

2. (Well-definition of Dimension) Any two bases have the same cardinality.

Proof. If the space is trivial then both statements are immediate. Otherwise:

1. Suppose S is a finite spanning set for V and that X a linearly independent subset. The Exchange
Theorem says there exists a finite spanning set X ∪ (S \ T) containing X. By the Existence
theorem, there exists a basis β such that X ⊆ β ⊆ X ∪ (S \ T).

2. If β and γ are bases, take X = β and S = γ in the Exchange Theorem to see that |β| ≤ |γ|. Now
repeat the argument with the roles reversed.

Definition 1.39. The dimension dimF V of a finite-dimensional vector space V over a field F is the
cardinality of any basis.a

aWe usually write dim V if the field is understood, but be careful: see Exercise 1.4.6. . .

Examples 1.40. 1. The dimension is often part of the name of a vector space or is easily read off:

dim R5 = 5, dim Fn = n, dim Mm×n(F) = mn

2. Beware of polynomials! The standard basis of Pn(R) is {1, x, . . . , xn}, whence dim Pn(R) = n + 1.

Corollary 1.41. Suppose W is a subspace of a finite-dimensional space V. Then:

1. dim W ≤ dim V.

2. dim W = dim V =⇒ W = V.

Proof. By the Extension Theorem, we may extend any basis α of W to a basis β of V. Since α ⊆ β, we
plainly have dim W = |α| ≤ |β| = dim V. Part 2 is an exercise.

Summary: bases of finite-dimensional vector spaces We have not quite proved all of the following,
but all should now seem at least reasonable.

1. Every such space has a basis and all have the same cardinality (the dimension).

2. We can extend a linearly independent set to a basis: a basis is a maximal linearly independent set.

3. Every spanning set contains a basis as a subset: a basis is a minimal spanning set.

4. A subset β is a basis of V if it satisfies any two of the following (it then satisfies the third):

|β| = dim V, β is linearly independent, Span β = V
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Example 1.42. We verify that β =
{(

1
3
4

)
,
(

2
1
5

)
,
(

1
1
1

)}
is a basis of R3.

Since |β| = 3 = dim R3, we need only check linear independence:

a

1
3
4

+ b

2
1
5

+ c

1
1
1

 = 0 ⇐⇒
1 2 1

3 1 1
4 5 1

a
b
c

 = 0 =⇒ a = b = c = 0

since the matrix is invertible.
It is unnecessary, but the invertibility also shows directly that β is a spanning set: given x ∈ R3,a

b
c

 :=

1 2 1
3 1 1
4 5 1

−1

x =⇒ x = a

1
3
4

+ b

2
1
5

+ c

1
1
1

 ∈ Span β

Exercises 1.4 1. Prove carefully that β = {3i + 2k, 2i + k, j + k} is a basis of R3.

2. Let p(x) = 3 − 5x + 7x2 ∈ P2(R). With respect to the bases β = {1 − x, 1 + x2, x − 2x2} and
γ = {2 − x, x2, 1 + x}, find the co-oordinate representations [p]β and [p]γ.

3. As in Exercise 1.35, find a subset of S which is a basis of the vector space V.

(a) V = R3, S =
{(

1
1
2

)
,
(

1
2
3

)
,
(

0
2
2

)
,
(

1
0
1

)
,
(

0
2
3

)
,
(

2
1
2

)}
(b) V = P3(R), S =

{
1 + 2x, 1 + x + x2, 2 + x − x2, 3 + 2x, x − 2x3}

4. Find a basis and thus the dimension of the following subspace of F5:

W = {a1e1 + · · ·+ a5e5 ∈ F5 : a1 − a3 − a4 = 0}

5. Let u, v, w be distinct vectors in a vector space V. Prove that if β = {u, v, w} is a basis of V,
then γ := {u + v + w, v + w, w} is also a basis of V.

6. C3 is a vector space over C and over R. What are the values dimC C3 and dimR C3? State a basis
in each case.

7. (a) Define Q(
√

2) = {a + b
√

2 : a, b ∈ Q}. Prove that this is a vector space over Q and that
β = {1,

√
2} is a basis.

(b) More generally, if d ∈ Z is not a perfect square, prove that dimQ Q(
√

d) = 2.

8. Explain the observation in the proof of the Existence Theorem 1.34: If Span X ̸= Span S, then
∃sm+1 ∈ S such that sm+1 ̸∈ Span X.

9. Given subsets X and S of the vector space V, compute the exchange T from the Exchange
Theorem by mirroring Example 1.37.

(a) X =
{(

1
1
2

)
,
( 2

0
−1

)}
, S = {i, j, k}, V = R3.

(b) X = {1 − x, 2 + x2, 1 + x3}, S = {1, x, x2, x3}, V = P3(R).

(c) X =
{(

0 1
1 1

)
,
(

0 −1
0 1

)}
, S = {E11, E12, E21, E22}, V = M2(R).
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10. Let V = {(xn)∞
n=1} be the set of all sequences of real numbers. This is a vector space over R

under elementwise addition and scalar multiplication. For example: if xn = 1
n and yn = 1 − 1

n2 ,
then (xn) + (yn) is the sequence (zn) with nth term

zn = xn + yn =
1
n
+ 1 − 1

n2

(a) For each m ∈ N define the sequence Em = (em
n ) where

em
n =

{
1 if n = m
0 otherwise

Thus E1 = (1, 0, 0, 0, . . .) and E2 = (0, 1, 0, 0, . . .), etc. Show that the set X = {Em : m ∈ N}
is a linearly independent subset of V.

(b) Is X a basis of V? Why/why not?

11. Let V be a vector space with dimension n ≥ 1, and let S be a generating set.

(a) Show that S contains a linearly independent subset X.

(b) If X is a linearly independent subset of S, but X is not a basis, prove that ∃s ∈ S such that
X ∪ {s} is linearly independent.

(c) Prove that there exists a subset of S which is a basis of V.

(d) Prove that |S| ≥ n.

(This is asking you to modify the proof of the Existence Theorem. Note that you cannot assume that S is
a finite set!)

12. (Optional application) In this question we use linear algebra to find a polynomial of minimal
degree through a set of points in the plane. Suppose that a0, a1 are distinct real numbers. Define
the functions

f0(x) =
x − a1

a0 − a1
, f1(x) =

x − a0

a1 − a0

It follows that

fi(aj) =

{
1 if i = j
0 if i ̸= j

(∗)

(a) Prove that f0 and f1 are linearly independent.

(b) Suppose that b0, b1 are real numbers. Show that the straight line passing through the points
(a0, b0) and (a1, b1) lies in Span{ f0, f1} and that, consequently, { f0, f1} forms a basis of the
vector space of linear polynomials P1(R).

(c) Repeat parts (a) and (b) for any set of distinct values a0, a1, . . . , an to obtain polyno-
mials f0, f1, . . . , fn which satisfy (∗) and form a basis of Pn(R). Hence or otherwise,
prove that there is a unique degree ≤ n + 1 polynomial passing through any points
(a0, b0), . . . , (an, bn) where the ai are distinct.

(d) Hence or otherwise, find the unique degree 3 polynomial which passes through the points
(0, 1), (1, 4), (3,−1) and (5, 10).
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1.5 Maximal linearly independent subsets (non-examinable)

In the previous section, we showed that every finite-dimensional vector space has a basis. What
about other vector spaces? Does every vector space have a basis?

Examples 1.43. To see the difficulty, consider two related spaces and the set β = {1, x, x2, x3, · · · }.

1. The space of polynomials P(R) has standard basis β (Exercise 1.3.12), and is therefore an
infinite-dimensional space with a countable basis: it seems reasonable to write dim P(R) = ℵ0.

2. The space V of formal power series with coefficients in R contains the vector

∞

∑
n=0

xn = 1 + x + x2 + x3 + · · ·

an infinite combination of the elements of β. Plainly β is not a basis of V. But does V have a
basis and, if so, how can we find one?

There are two standard ways to tackle our problem.

1. Broaden the concept of linear combination/span to allow for infinite sums.2 This introduces
a new difficulty, convergence, which takes us into the realm of analysis and requires further
definitions. If you later study Banach and Hilbert spaces, this is the approach you will follow.
Indeed, in the context of power series, β is incredibly useful, even more so than a basis would be!

2. Appeal to Zorn’s Lemma, a technical result equivalent to the (somewhat) controversial axiom of
choice. This is the approach we’ll follow for the remainder of the section.

Definition 1.44. Let F be a set of sets. A subset C ⊆ F is a chaina in F if

∀A, B ∈ C either A ⊆ B or B ⊆ A

A chain C has an upper bound in F if there is some set B ∈ F such that

∀A ∈ C we have A ⊆ B

A set β ∈ F is maximal it is a subset of no member of F but itself.

aAlternatively C is a nest, a tower, or is totally ordered.

The idea is to let F to be the set of all linearly independent subsets of a vector space V. Our goal is
then to hunt for a maximal member of F , since a basis β is precisely a maximal linearly independent set
(see Exercise 1.5.1):

1. β is linearly independent.

2. The only linearly independent subset of V containing β is β itself.
2Definition 1.17 only allows us to conclude, by induction, that any finite sum of vectors ∑n

i=1 vi is well-defined. In the
abstract, i.e. without limits, an infinite sum ∑∞

n=1 vn has no meaning.
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Examples 1.45. 1. Consider the standard basis β = {i, j, k} of R3. Clearly β is an upper bound for
the following chain of linearly independent subsets

C =
{
{i}, {i, j}, {i, j, k}

}
2. The basis β = {1, x, x2, . . .} of P(R) is an upper bound for the chain

C =
{
{1}, {1, x}, {1, x, x2}, . . .

}
Read this example carefully: the ellipsis hides infinitely many subsets. In particular the upper
bound β does not have to be an element of the chain! It is, however, the union β =

⋃
U∈C

U of all
elements of the chain. . .

Axiom 1.46 (Zorn’s Lemma). Let F be a non-empty family of sets. If every chain C ⊆ F has an
upper bound MC ∈ F , then F has a maximal member.

Theorem 1.47. Every vector space has a basis.

Proof. If V is non-trivial, let F = {linearly independent subsets of V}. Plainly this is non-empty.
Suppose C ⊆ F is a chain and define

MC :=
⋃

U∈C
U

We claim that MC is an upper bound for C in F . For this, we need to show two things:

1. MC ∈ F : that is, MC is a linearly independent set.

2. ∀A ∈ C, we have A ⊆ MC .

The latter is obvious from the definition of union! For the former, suppose that u1, . . . , un ∈ MC are
distinct vectors such that

a1u1 + · · ·+ anun = 0

By the total ordering of C, we seea that ∃U ∈ C such that u1, . . . , un ∈ U. But each U is linearly
independent, whence a1 = · · · = an = 0. It follows that MC ∈ F .
Applying Zorn’s lemma, we see that F has a maximal element β, which is necessarily a basis of V.

aSince ui ∈ MC , ∃Ui ∈ C such that ui ∈ Ui. Now let U = U1 ∪ · · · ∪ Un. By total ordering, one of these Ui contains all
the others: this is U. Note that this only works because the subscript n is finite!

This argument (create an upper bound by taking the union over a chain before invoking Zorn’s
Lemma) is replicated in other areas of mathematics.3 The results of the previous section may be
generalized to cover infinite-dimensional vector spaces. A couple are outlined in the exercises.

3For instance, in abstract algebra to prove the existence of a maximal ideal in a ring.
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Exercises 1.5 (Remember these are optional!)

1. As defined above, a set β is a maximal linearly independent subset of V if

• β is linearly independent.

• The only linearly independent subset of V containing β is β itself.

The discussion on page 20 shows that every basis is a maximal linearly independent subset.
Prove the converse:

β a maximal linearly independent subset =⇒ β is a basis

(You cannot assume that β is finite: the entire point of this section is that it needn’t be!)

2. Show that categorization 4 on page 23 does not extend to infinite dimensions: specifically, state
a linearly independent subset X of a vector space V such that |X| = dim V, but such that X is
not a basis of V.

3. Prove a more general version of Theorem 1.32: If β is a basis of V, then for all non-zero v ∈ V
there is a unique finite subset {v1, . . . , vn} ⊆ β and unique non-zero scalars a1, . . . , an such that

v = a1v1 + · · ·+ anvn

Our only freedom is in the order of the vectors vi.

(Hint: obtain a contradiction by supposing v ∈ V is a non-zero vector which can be written as a linear
combination of elements of β in two different ways)

4. Prove the infinite-dimensional version of the Extension Theorem: if X is a linearly independent
subset of a vector space V, then there exists a basis of V which contains X.

(Hint: let F be the set of all linearly independent subsets of V which contain X, and mimic the proof of
Theorem 1.47)

5. Consider the set X = {eλx : λ ∈ R}. Investigate the idea that X is a linearly independent set in
the vector space of continuous functions on R, and the relationship of this to the Vandermonde
matrix. It follows that Span X is a subspace of C(R) with uncountably infinite dimension.
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2 Linear Transformations and Matrices

A standard approach in algebra is to study collections of sets with a common structure and the
maps between them which preserve that structure. In linear algebra this means vector spaces and
the maps which behave nicely with respect to their defining structure, namely addition and scalar
multiplication. Otherwise said, linear maps should preserve linear combinations.

2.1 Linear Maps, Compositions and Isomorphisms

Definition 2.1. Let V and W be vector spaces over the same field F. A function T : V → W is linear
if ∀v1, v2 ∈ V, λ ∈ F

1. T(v1 + v2) = T(v1) + T(v2)

2. T(λv1) = λT(v1)

}
equivalently T(λv1 + v2) = λT(v1) + T(v2)

The set of linear maps from V to W is denoted L(V, W). If V = W we simply write L(V).

Warning! The definition looks very similar to that of a subspace. Make sure you know the difference!

You have already met many examples of linear maps in your mathematical career.

Examples 2.2. 1. For any V, W, the zero function 0 ∈ L(V, W) maps everything to 0W ∈ W, while
the identity function I ∈ L(V) leaves everything untouched:

∀v ∈ V, 0(v) = 0W , I(v) = v

2. If v ∈ Fn and A ∈ Mm×n(F), then left-multiplication by A is the linear map

LA : Fn → Fm : v 7→ Av

Verifying that this is linear is tedious: e.g., the ith entry of the vector A(x + y) is

[A(x + y)]i =
n

∑
j=1

aij(xj + yj) =
n

∑
j=1

aijxj +
n

∑
j=1

aijyj = [Ax]i + [Ay]i

precisely the ith entry of the vector Ax + Ay. Scalar multiplication is similar.

3. Differentiation: Since (λ f + g)′ = λ f ′ + g′, the function T : f 7→ d f
dx is linear map defined on

any vector space of differentiable functions.

4. Integration: T : C([a, b]) → R : f 7→
∫ b

a f (x)dx is linear, where C([a, b]) is the set of continuous
functions f : [a, b] → R.

The following are easy to prove straight from Definition 2.1.

Lemma 2.3. 1. Linear maps preserve zero: T(0V) = T(0v) = 0T(v) = 0W .

2. L(V, W) is a vector space whose identity is the zero function 0 ∈ L(V, W).
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More important is the fact that linear maps are, as advertised, precisely those functions which pre-
serve linear combinations.

Lemma 2.4. A function T : V → W is linear if and only if

∀vi ∈ V, ai ∈ F, T

(
n

∑
i=1

aivi

)
=

n

∑
i=1

aiT(vi)

In particular, T is defined by what it does to a basis: if β is a basis and we know all the values T(vj)
for every vj ∈ β, then we know T.

The proof is an exercise.

Example 2.5. The standard basis of R3 is β = {i, j, k}. Suppose T ∈ L(R3, R2) is such that

T(i) =
(

3
4

)
, T(j) =

(
1
9

)
, T(k) =

(−4
7

)
Since T is defined on a basis, we can easily compute the entire map:

T

x
y
z

 = xT(i) + yT(j) + zT(k) = x
(

3
4

)
+ y

(
1
9

)
+ z

(−4
7

)
=

(
3 1 −4
4 9 7

)x
y
z


It should be no surprise that the linear map T is in fact LA where A =

(
3 1 −4
4 9 7

)
. We’ll explore the

relationship between linear maps, bases and matrices more fully in Section 2.3.

Compositions & Inverses

As functions, linear maps may be composed with each other, and might have inverses. Likely the
only new information in the definition is notational.

Definition 2.6. 1. If T ∈ L(V, W) and U ∈ L(W, X), then the composition of T and U is defined bya

UT : V → X : v 7→ U(T(v))

In the special case that U = T (necessarily V = W = X), the composition is written T2; similarly
for higher powers T3, T4, etc.

2. T ∈ L(V, W) is invertible, or an isomorphism, if has an inverse; a function U : W → V for which

TU = IW and UT = IV

where IW , IV are the identity maps on V, W respectively.

Vector spaces V, W are isomorphic if there exists an isomorphism T ∈ L(V, W).

aFor brevity, we write UT instead of U ◦ T.
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Examples 2.7. 1. If T ∈ L(R2, P2(R)) is defined by T ( a
b ) = a + bx, then T is an isomorphism, with

inverse U : a + bx 7→ ( a
b ).

2. (a) Let A =
(

1 2
−3 1

)
and consider the linear map LA ∈ L(R2). Then

L2
A

(
x
y

)
=

(
1 2
−3 1

)((
1 2
−3 1

)(
x
y

))
=

(
1 2
−3 1

)(
x + 2y
−3x + y

)
=

(−5x + 4y
−6x − 5y

)
Unsurprisingly, this is the linear map LA2 : indeed A2 =

( −5 4
−6 −5

)
.

(b) Now consider U = LB where B = 1
7

(
1 −2
3 1

)
= A−1 is the inverse matrix. Plainly

TU
(

x
y

)
= A

(
B
(

x
y

))
= AB

(
x
y

)
=

(
x
y

)
UT
(

x
y

)
= (BA)

(
x
y

)
=

(
x
y

)
whence U is an inverse of T, which is therefore an isomorphism.

3. Let V = C∞(R) be the vector space of infinitely differentiable functions f : R → R. Then
T( f )(x) = f ′(x) + f (x) and U( f )(x) =

∫ 1
0 f (x)dx are linear maps T, U ∈ L(V). We compute:

UT( f )(x) = U
(

f ′(x) + f (x)
)
=
∫ 1

0
f ′(x) + f (x)dx = f (1)− f (0) +

∫ 1

0
f (x)dx

4. Define T, U ∈ L(P1(R)) by T( f )(x) = f (x) + 3 f ′(x) and U( f )(x) = f (x)− 3 f ′(x). Then,

TU( f )(x) = T
(

f (x)− 3 f ′(x)
)
= f (x)− 3 f ′(x) + 3( f ′(x)− 3 f ′′(x)) = f (x)

since f ′′(x) = 0. We can similarly check that UT = IP1(R) so that U is an inverse of T.

The examples suggest some simple results.

Lemma 2.8. A composition of linear maps is linear.

Proof. This follows from the linearity of both T and U:

UT(λv1 + v2) = U
(

T(λv1 + v2)
)
= U

(
λT(v1) + T(v2)

)
(linearity of T)

= λU
(
T(v1)

)
+ U

(
T(v2)

)
(linearity of U)

= λUT(v1) + UT(v2)

Lemma 2.9. Let T ∈ L(V, W) be an isomorphism. Then:

1. The inverse is unique: we call this function T−1.

2. The inverse is an isomorphism: T−1 ∈ L(W, V) is linear and invertible with (T−1)−1 = T.

3. If S ∈ L(W, X) is invertible, then ST ∈ L(V, X) is invertible with (ST)−1 = T−1S−1.

We leave the proof as an exercise. We’ll return to invertibility later.
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Exercises 2.1 1. Show explicitly that the following are linear maps:

(a) T : R2 7→ R3 :
(

x
y

)
7→
( 3x

2y−x
x

)
(b) T : P3(R) → P3(R) defined by T( f )(x) = (x − 1) f ′′(x) + 7 f (x)

(c) T : Mn(F) → Mn(F) : A 7→ 3A − 2AT, where AT is the transpose

2. Give a reason why the function T : R2 → R2 :
(

x
y

)
7→
(

xy
3x − y

)
is non-linear.

3. Let T( f )(x) = f (x) + x f ′(x) where f (x) ∈ P2(R).

(a) Show that T ∈ L(P2(R)).

(b) Compute the linear map T2 ∈ L(P2(R)); that is, express T2( f )(x) in terms of f and its
derivatives.

4. Let T, U ∈ L(P2(R)) be defined by

T( f )(x) = 2 f (x) + f ′′(x), U( f )(x) =
1
4
(
2 f (x)− f ′′(x)

)
Prove that U = T−1.

5. Prove or disprove: T : R2 → P1(R) : ( a
b ) 7→ ax − 2a + b is an isomorphism.

(Try to guess an inverse!)

6. Prove, the ‘equivalently’ claim in Definition 2.1, that T : V → W is linear if and only if

∀v1, v2 ∈ V, λ ∈ F, T(λv1 + v2) = λT(v1) + T(v2)

7. Prove explicitly that if T1, T2 ∈ L(V, W), then T1 + T2 is also a linear map.

8. Prove Lemma 2.4.

9. Prove all three parts of Lemma 2.9.

10. With reference to Lemma 2.9, explain why ‘Isomorphic’ is an equivalence relation on any set of
vector spaces.

11. Prove that a linear map T ∈ L(V, W) is an isomorphism if and only if it is bijective, that is,

(a) Injective: ∀v1, v2 ∈ V, T(v1) = T(v2) =⇒ v1 = v2.

(b) Surjective: ∀w ∈ W, ∃v ∈ V such that w = T(v).
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2.2 The Rank–Nullity Theorem

We define two sets which are crucial for understanding linear maps.

Definition 2.10. Suppose T ∈ L(V, W). Its range/image and nullspace/kernel are the sets

R(T) := {T(v) ∈ W : v ∈ V}, N (T) := {v ∈ V : T(v) = 0W}

Example 2.11. Let T ∈ L(P3(R), P2(R)) be ‘differentiate:’

T(a + bx + cx2 + dx3) = b + 2cx + 3dx2

Plainly N (T) = {a : a ∈ R} ⊆ P3(R) is the space of constants, and

R(T) = Span{0, 1, 2x, 3x2} = Span{1, 2x, 3x2} = P2(R)

The example immediately suggests that the range and nullspace are not merely subsets. . .

Lemma 2.12. The nullspace and range of T ∈ L(V, W) are subspaces of V and W respectively.

Proof. Everything follows from the formula T(λv1 + v2) = λT(v1) + T(v2).
N (T) is non-empty since T(0) = 0. Moreover, if v1, v2 ∈ N (T), so is λv1 + v2, whence N (T) is a
subspace of V. The range is similar.

Definition 2.13. The rank and nullity of a linear map T ∈ L(V, W) are

rank T := dimR(T) null T := dimN (T)

Examples 2.14. 1. Revisiting Example 2.11, we see that rank T = 3 and null T = 1.

2. Let LA(v) = Av where A ∈ Mm×n(F). Applied to the standard basis β of Fn, we see that

R(LA) = Span LA(β) = Span{Ae1, . . . , Aen}

Since Aej is the jth column of A, we see that R(LA) is the column space of A.

For example, if A =

( 1 2 3
0 1 1
1 0 1
0 3 3

)
, then

R(LA) = Span
{( 1

0
1
0

)
,
( 2

1
0
3

)
,
( 3

1
3
3

)}
= Span

{( 1
0
1
0

)
,
( 2

1
0
3

)}
since the third column is a linear combination of the others. We conclude that rank LA = 2. To
find the nullspace requires solving the system Ax = 0. After a few row operations,

N (LA) =
{( x

y
z

)
: x + z = 0 = y + z

}
= Span

{( 1
1
−1

)}
=⇒ null LA = 1

These values in fact satisfy one of the most crucial relationships in linear algebra.
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Theorem 2.15 (Rank–Nullity). If T ∈ L(V, W), then rank T + null T = dim V.

Examples 2.16. First revisit Examples 2.14.

1. If T = d
dx ∈ L(P3(R), P2(R)), then, in accordance with the rank–nullity theorem,

rank T + null T = 3 + 1 = 4 = dim P3(R)

2. If A =

( 1 2 3
0 1 1
1 0 1
0 3 3

)
so that LA ∈ L(R3, R4), then

rank LA + null LA = 2 + 1 = 3 = dim R3

3. Let T ∈ L(M2(R)) be defined by T(A) = A + AT where AT is the transpose, that is,

T
(

a b
c d

)
=

(
2a b + c

b + c 2d

)
It should be clear that

R(T) =
{( p q

q r
)

: p, q, r ∈ R
}

N (T) =
{(

0 s
−s 0

)
: s ∈ R

}
are, respectively, the subspaces of symmetric and skew-symmetric matrices. Plainly rank T +
null T = 3 + 1 = 4 = dim M2(R).

4. Let T ∈ L(P(R)) be defined by T( f )(x) = f (x) + f (−x). It is easy to check that this is linear.
Moreover,

f ∈ N (T) ⇐⇒ f (−x) = − f (x) ⇐⇒ f is odd ⇐⇒ f ∈ Span{x, x3, x5, x7, · · · }

We may also check that the range consists of all even polynomials R(T) = Span{1, x2, x4, . . .}.
The rank–nullity theorem holds even for this infinite-dimensional example, though it isn’t very
instructive.4

Before proving the rank–nullity theorem, we consider what a linear map does to a basis.

Lemma 2.17. If β is a basis of V, then T(β) := {T(v) : v ∈ β} is a spanning set for R(T).

Proof. Let T(v) ∈ R(T). Then ∃vi ∈ β such that v = a1v1 + · · ·+ anvn. By Lemma 2.4,

T(v) = T

(
n

∑
i=1

aivi

)
=

n

∑
i=1

aiT(vi) ∈ Span(T(β))

Thus R(T) ≤ Span T(β).
Conversely, the right hand side of Lemma 2.4 is a general element of Span T(β) which is certainly in
the range of T. Thus Span T(β) ≤ R(T), and the subspaces are equal.

4If you’re happy with addition of infinite cardinals, the rank–nullity theorem reads ℵ0 + ℵ0 = ℵ0.
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Proof of Rank–Nullity Theorem. Suppose ν is a basis of N (T). By the Extension Theorem, we may
extend to a basis β = ν ∪ ρ of V, where ν ∩ ρ = ∅. The proof now rests on two claims:

1. T(ρ) is a basis of R(T). First we verify the spanning property: by Lemma 2.17,

R(T) = Span T(β) = Span{T(n), T(r) : n ∈ ν, r ∈ ρ} = Span{T(r) : r ∈ ρ} = Span T(ρ)

For linear independence, suppose r1, . . . , rr ∈ ρ and compute:

0W =
r

∑
i=1

aiT(ri) = T

(
r

∑
i=1

airi

)
=⇒

r

∑
i=1

airi ∈ N (T) ∩ Span ρ = {0V} (∗)

=⇒ a1 = · · · = an = 0 (†)

We conclude that T(ρ) is a linearly independent spanning set of R(T).

2. |ρ| = |T(ρ)|. We leave this to Exercise 2.1.3.

In conclusion:

dim V = |β| = |ν|+ |ρ| (2)= null T + |T(ρ)| (1)= null T + rank T

Note that the proof works when V is infinite-dimensional though the result is not so useful.

Injective & Surjective Linear Maps: Isomorphisms Revisited

It turns out that injectivity and surjectivity may be checked by considering the rank and nullity.

Theorem 2.18. Suppose T ∈ L(V, W).

1. T is injective ⇐⇒ N (T) = {0} ⇐⇒ null T = 0.

2. T surjective ⇐⇒ R(T) = W =⇒ rank T = dim W.

Additionally, if W is finite-dimensional, then rank T = dim W =⇒ T surjective.

3. If dim V = dim W is finite, then

T is injective ⇐⇒ null T = 0 ⇐⇒ rank T = dim V ⇐⇒ T is surjective

In view of Exercise 2.1.11, if any one of these conditions holds then T is an isomorphism

Proof. 1. Injectivity means T(v1) = T(v2) =⇒ v1 = v2. The result follows follows quickly from,

T(v1) = T(v2)
linearity⇐⇒ T(v1 − v2) = 0 ⇐⇒ v1 − v2 ∈ N (T)

2. R(T) = W is the definition of surjectivity: certainly this implies rank T = dim W. In finite
dimensions we have the converse:

R(T) ≤ W and dimR(T) = rank T = dim W =⇒ R(T) = W

3. This follows immediately from the rank–nullity theorem and parts 1 & 2.
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Examples 2.19. 1. Continuing a previous example, T = d
dx ∈ L(P3(R), P2(R)) is surjective

(rank T = 3 = dim P2(R)) but not injective (null T = 1 ̸= 0). The non-injectivity of T cor-
responds to the famous ‘+C’ from calculus:

d
dx

(p(x) + C) =
d

dx
p(x)

2. Consider LA ∈ L(R2, R3) where A =
( 1 3

0 1
1 1

)
and compute the range and nullspace:

R(LA) = Span
{(

1
0
1

)
,
( 3

1
1

)}
=⇒ rank LA = 2 ̸= dim R3 =⇒ LA is not surjective.

N (LA) = {0} =⇒ LA is injective.

3. Let T ∈ L(P2(R)) be defined by T(p)(x) = p′(x) + (x2 − 1)
∫ 1

0 p(t)dt. Observe that

T(a + bx + cx2) = b + 2cx + (x2 − 1)
(

a +
1
2

b +
1
3

c
)

=
1
2

b − a − 1
3

c + 2cx +

(
a +

1
2

b +
1
3

c
)

x2

= 0 ⇐⇒ c = 0 =
1
2

b − a = a +
1
2

b ⇐⇒ a = b = c = 0

Since N (T) = {0}, we see that T is bijective and thus an isomorphism.

Corollary 2.20. Suppose that V, W are vector spaces over the same field.

1. If T ∈ L(V, W) is an isomorphism and β is a basis of V, then T(β) is a basis of W.

2. V and W are isomorphic if and only if dim V = dim W.

The proof is little mostly a special case of the rank–nullity theorem: indeed you should re-read the
proof to convince yourself that the restriction TSpan ρ : Span ρ → R(T) is indeed an isomorphism!

Proof. 1. This is a special case of part 1 of the proof of the rank–nullity theorem: we have N (T) =
{0}, whence ν = ∅ and ρ = β.

2. (⇒) This is part 2 of the same proof: dim V = |β| = |T(β)| = dim W.

(⇐) Let dim V = dim W and choose any bases β, γ of V, W. These have the same cardinality,
whence ∃ f : β → γ a bijection. By Lemma 2.4, f defines a unique linear map T ∈ L(V, W): if
v1, . . . , vn ∈ β, define

T

(
n

∑
i=1

aivi

)
:=

n

∑
i=1

ai f (vi)

It is straightforward, if tedious, to check that T is an isomorphism.
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Examples 2.21. 1. R6, P5(R), M2×3(R), M3×2(R) are isomorphic since they all have dimension 6
over the same field R. Explicit isomorphisms can be found by lining up the standard bases: e.g.

T : M2×3(R) → P5(R) by T
(

a b c
d e f

)
= a + bx + cx2 + dx3 + ex4 + f x5

2. Be careful with base fields!

(a) P5(R) is not isomorphic to C6 since the (implied) base fields are different R ̸= C.

(b) Viewing C6 as a vector space over R, we still fail to have isomorphicity since

dimR P5(R) = 6 ̸= 12 = dimR C6

(c) As vector spaces over R the spaces P5(R) and C3 are isomorphic since both have real
dimension 6. A suitable isomorphism is

T(a + bx + cx2 + dx3 + ex5 + f x5) =

(
a+ib
c+id
e+i f

)
Exercises 2.2 1. For each function T : V → W: prove that T is linear, compute N (T) and R(T),

and the rank and nullity, verify the Rank–Nullity theorem, and determine whether the function
is injective or surjective.

(a) T : R2 → R3 :
(

x
y

)
7→
(

x+y
0

2x−y

)
(b) T : Mn(F) → F : A 7→ tr A, where tr A =

n
∑

i=1
Aii is the trace of A.

(c) T : P4(R) → P4(R) : f 7→ g where g(x) = f (x)− (x2 + 1) f ′′(x).

2. For each linear map, find the range and nullspace and compute the rank and nullity.

(a) T = LA ∈ L(C4) where A =

(
1 i 1 −i
0 1 0 −1
i 0 i 0
i −1 i 1

)
(b) T ∈ L(V) where T( f )(x) = f ′′(x)− 4 f (x) and V = Span{e2x, e−2x, xe2x, xe−2x}.

3. Verify the following claims made during the proof of the rank–nullity theorem.

(a) (∗) N (T) ∩ Span ρ = {0V}.

(b) (†)
r
∑

i=1
airi = 0V =⇒ a1 = · · · = an = 0.

(c) |ρ| = |T(ρ)|: do this by proving that Tρ : ρ → T(ρ) is a bijection.

4. Suppose that dim V > dim W. Prove that there are no injective functions T ∈ L(V, W).

5. Let T = d
dx ∈ L(P(R)). Is T injective? Surjective? Why is this not a problem for Theorem 2.18?
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6. Which of the following pairs are isomorphic? If yes, state an explicit isomorphism.

(a) F3 and P3(F) (b) F4 and P3(F) (c) M2(R) and P3(R)

(d) V = {A ∈ M2(R) : tr A = 0} and R4 (e) V = {A ∈ M2(R) : tr A = 0} and R3

7. Let T ∈ L(V, W) be an isomorphism and U a subspace of V. Prove that T(U) := {T(u) : u ∈ U}
is a subspace of W and that dim T(U) = dim U.

8. (Hard) We prove the first isomorphism theorem for vector spaces and see its relation to the rank–
nullity theorem. This should be familiar if you’ve studied group theory: you will need to recall
the exercise on cosets from the first chapter. Throughout U is a subspace of V.

(a) Let V
/

U
= {v + U : v ∈ V} be the set of cosets of U in V. Prove that the canonical map

γ : V → V
/

U
: v 7→ v + U

is linear and has nullspace U.
(Thus every subspace of V is the nullspace of some linear map γ with dom γ = V)

(b) Let T ∈ L(V, W). Prove that

v1 +N (T) = v2 +N (T) ⇐⇒ T(v1) = T(v2)

(c) Prove that the following is a well-defined isomorphism of vector spaces:

µ : V
/
N (T)

→ R(T) : v +N (T) 7→ T(v)

(d) By extending a basis of U to V, show that for any subspace U ≤ V we have

dim V
/

U
+ dim U = dim V

Hence conclude the rank–nullity theorem.
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2.3 The Matrix Representation of a Linear Map

Recall that if β is a basis of a n-dimensional vector space V over F, then any vector v ∈ V has a
unique co-ordinate representation [v]β ∈ Fn. The same thing can be done for a linear map, resulting
in a tight relationship between linear maps, bases and matrices.

Example 2.22. The linear map on R2 defined by T ( x
y ) = ( y

x ) is plainly left-multiplication by the
matrix A =

(
0 1
1 0

)
. Otherwise said, T = LA. Observe that the columns of A are the result of applying

T to the standard basis ϵ = {i, j}:

T(i) =
(

0
1

)
T(j) =

(
1
0

)
As the next result shows, given any linear map between finite dimensional spaces, choosing bases
yields a representation of the map in terms of matrix multiplication.

Theorem 2.23 (Matrix representations). Suppose that β = {v1, . . . , vn} and γ = {w1, . . . , wm} are
bases of V and W respectively.

1. If T ∈ L(V, W) then the matrix

A =
(
[T(v1)]γ · · · [T(vn)]γ

)
∈ Mm×n(F) (†)

with jth column [T(vj)]γ is the unique matrix satisfying

∀v ∈ V, [T(v)]γ = A[v]β (∗)

2. Given A ∈ Mm×n(F), there is a unique linear map T satisfying (∗).

Proof. 1. Suppose A is defined by (†) with ijth entry aij =
[
[T(vj)]γ

]
i
, let v = b1v1 + · · ·+ bnvn ∈ V

be given, and compute: the column vector A[v]β ∈ Fm has ith row

(
A[v]β

)
i
=

n

∑
j=1

aijbj =
n

∑
j=1

(
[T(vj)]γ

)
i
bj =

n

∑
j=1

(
bj[T(vj)]γ

)
i
=

(
n

∑
j=1

[bjT(vj)]γ

)
i

=

[T

(
n

∑
j=1

bjvj

)]
γ


i

=
(
[T(v)]γ

)
i

(linearity/Lemma 2.4)

A therefore satisfies (∗). Conversely, if ϵ = {e1, . . . , en} is the standard basis of Fn and A
satisfies (∗), then

[T(vj)]γ = A[vj]β = Aej

is the jth column of A: this proves uniqueness.

2. The co-ordinate representation [T(v)]γ is unique and so (∗) uniquely defines T.
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Definition 2.24. The matrix defined in (†) is the matrix representation of T with respect to β and γ: we
write A = [T]γβ . In the simplest case when V = W and β = γ, we write [T]β.

The Theorem can be summarized by commutative diagrams: both options for travelling from V to
Fm produce the same result.

V T //

[ ]β

��

W

[ ]γ

��
Fn

A=[T]γβ // Fm

v � //
_

��

T(v)
_

��
[v]β

� // [T(v)]γ = [T]γβ [v]β

The big take-away is this:

Linear Map Choose
↭
Bases

Matrix Multiplication

More precisely, given bases of finite dimensional vector spaces, any linear map between them is
equivalent to multiplication by a unique matrix.

Examples 2.25. 1. Recall the course introduction and the linear map T defined by ‘rotate clockwise
by 30° around the origin in R2.’ With respect to the standard basis ϵ = {i, j}, the matrix of T is

[T]ϵ =
(
[T(i)]ϵ T[(j)]ϵ

)
=

( √
3

2
1
2

− 1
2

√
3

2

)

To rotate, say v = 2i − 4j, we would compute

[T(v)]ϵ = [T]ϵ[v]ϵ =

( √
3

2
1
2

− 1
2

√
3

2

)(
2
−4

)
=

( √
3 − 2

−1 − 2
√

3

)
whence T(v) = (

√
3 − 2)i + (−1 − 2

√
3)j.

2. Recall Example 2.14.1. Let the standard bases of P3(R) and P2(R) be β = {1, x, x2, x3} and
γ = {1, x, x2}. The matrix of T = d

dx ∈ L(P3(R), P2(R)) is then

[T]γβ =
(
[T(1)]γ [T(x)]γ [T(x2)]γ [T(x3)]γ

)
=
(
[0]γ [1]γ [2x]γ [3x2]γ

)
=

0 1 0 0
0 0 2 0
0 0 0 3


For instance, compare the calculations

[T]βγ


2
5
3
1

 =

5
6
3

↭ d
dx

(2 + 5x + 3x2 + x3) = 5 + 6x + 3x2
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3. Linear maps often look nice with respect to a sensible basis. For example, let T ∈ L(R2) is
defined by ‘reflect in the line y = 2x.’

The vectors v1 =
(

1
2

)
and v2 =

( −2
1

)
satisfy

T(v1) = v1 T(v2) = −v2

Clearly β = {v1, v2} is a basis of R2, with respect to which

[T]β =

(
1 0
0 −1

)
This is much easier than finding the matrix with respect to
the standard basis (exercise) −1

1

2

y

−2 −1 1 2
x

i

j
T(i)

T(j)

v1

v2

T(v2)

[T]ϵ =
1
5

(−3 4
4 3

)
We will revisit this idea later: the vectors {v1, v2} are eigenvectors for T; the matrix of a linear
map with respect to an eigenbasis is always diagonal, with the eigenvalues down the diagonal.

4. Here is another example that simplifies nicely in terms of eigenvectors. Consider the linear
map T = LA ∈ L(R3) where

A =
1
5

4 0 2
0 5 0
2 0 1


Plainly A = [T]ϵ is the matrix of T with respect to the standard basis ϵ = {i, j, k}. Now consider

β = {n, p, q} =


−1

0
2

 ,

0
1
0

 ,

2
0
1


It is easy to verify that β is linearly independent and thus a basis of R3. Moreover,

T(n) = 0, T(p) = p, T(q) = q

from which the matrix is very simple

[T]β =
(
[T(n)]β [T(p)]β [T(q)]β

)
=
(
[0]β [p]β [q]β

)
=

0 0 0
0 1 0
0 0 1


Since p and q are perpendicular (p · n = 0 = q · n) to n, the matrix makes the physical inter-
pretation of the linear map clear: T is the orthogonal projection onto the subspace Span{p, q}.
It should also be from the map’s interpretation as a projection that N (T) = Span{n} and
R(T) = Span{p, q}.
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Composition and Matrix Multiplication

It seems reasonable to expect that composition of linear maps corresponds to matrix multiplication.
We merely have to be (very) careful with bases! Before seeing this, we engage in a little book-keeping.

Definition 2.26. The identity matrix In ∈ Mn(F) has ijth entry the Kronecker delta symbol

(In)ij = δij =

{
1 if i = j
0 if i ̸= j

Lemma 2.27. Let V be an n-dimensional vector space with basis β and let T ∈ L(V). Then

[T]β = In ⇐⇒ T = I is the identity map on V

Proof. (⇐) If T = I, then T(vi) = vi for each vi ∈ β. Plainly [T]β = In.
(⇒) By the uniqueness of the matrix representation, T = I is the only linear map with matrix In.

Theorem 2.28. Suppose T ∈ L(V, W) and U ∈ L(W, X) are linear maps and that V, W, X are
finite-dimensional with bases β, γ, δ respectively. Then

[UT]δβ = [U]δγ[T]
γ
β

In the common situation where V = W = X and β = γ = δ, this reduces to [UT]β = [U]β[T]β

Proof. Label the bases β = {v1, . . . , vl}, γ = {w1, . . . , wm} and δ = {x1, . . . , xn}, and the matrices
A = [T]γβ , B = [U]δγ and C = [UT]δβ. Observe first

[T(vk)]γ =

(
A1k
...

Amk

)
=⇒ T(vk) =

m

∑
j=1

wj Ajk (kth column of A)

[U(wj)]δ =

( B1j

...
Bnj

)
=⇒ U(wj) =

n

∑
i=1

xiBij (jth column of B)

[UT(vk)]δ =

(
C1k
...

Cnk

)
=⇒ UT(vk) =

n

∑
i=1

xiCik (kth column of C)

Now put it together:

n

∑
i=1

xiCik = UT(vk) = U

(
m

∑
j=1

wj Ajk

)
=

m

∑
j=1

U(wj)Ajk =
m

∑
j=1

n

∑
i=1

xiBij Ajk =
n

∑
i=1

xi

(
m

∑
j=1

Bij Ajk

)
Since δ = {x1, . . . , xn} is a basis we conclude that

Cik =
m

∑
j=1

Bij Ajk

Otherwise said, C = BA.
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Taking the special case where U = T−1 and δ = β, we instantly conclude:

Corollary 2.29. Suppose T ∈ L(V, W) is a map between n-dimensional spaces V, W with bases
β, γ. Then T is an isomorphism if and only if its matrix [T]γβ ∈ Mn(F) is invertible. Moreover

[T−1]
β
γ =

(
[T]γβ

)−1

Examples 2.30. 1. Recall (Example 2.25.1) that the matrix of ‘rotate clockwise by 30°’ with respect
to the standard basis ϵ = {i, j} of R2 is

[T]ϵ =

( √
3

2
1
2

− 1
2

√
3

2

)

It follows that T2 (rotate clockwise by 60°) and T3 (90°) have matrices

[T2]ϵ = [T]ϵ[T]ϵ =

( √
3

2
1
2

− 1
2

√
3

2

)2

=

(
1
2

√
3

2

−
√

3
2

1
2

)
and [T3]ϵ =

(
0 1
−1 0

)
Moreover, the inverse of T (namely ‘rotate 30° counter-clockwise’) has matrix

[T−1]ϵ = [T]−1
ϵ =

( √
3

2
1
2

− 1
2

√
3

2

)−1

=

(√
3

2 − 1
2

1
2

√
3

2

)

2. Recall Example 2.25.4, and suppose T ∈ L(R3) is projection onto the plane perpendicular to
n = −i + 2k. Also let U be rotation by 60° clockwise around the k-axis when viewed from
above. With respect to the standard basis ϵ = {i, j, k}, and following the previous example,

[UT]β = [U]β[T]β =

 1
2

√
3

2 0
−

√
3

2
1
2 0

0 0 1

 ·
 4

5 0 2
5

0 1 0
2
5 0 1

5

 =
1
10

 4 5
√

3 2
−4

√
3 5 −2

√
3

4 0 2


3. Let β = {e−x cos 2x, e−x sin 2x}, V = Span β and consider T = d

dx ∈ L(V). By computing

T(e−x cos 2x) = −e−x cos 2x − 2e−x sin 2x, T(e−x sin 2x) = 2e−x cos 2x − e−x sin 2x

we see that the matrix of T with respect to β, and its inverse are

[T]β =

(−1 2
−2 −1

)
=⇒ [T−1]β = [T]−1

β =
1
5

(−1 −2
2 −1

)
Since T−1 computes anti-derivatives, the upshot is that we can do this using linear algebra!∫

ae−x cos 2x + be−x sin 2x dx = − a + 2b
5

e−x cos 2x +
2a − b

5
e−x sin 2x

Of course if you really prefer integration by parts. . .
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A final bit of book-keeping: co-ordinate isomorphisms and matrices

Two colloquialisms are sometimes uttered in an attempt to summarize or simplify linear algebra.

1. Every vector space is really Fn in disguise.

2. Every linear map is really matrix multiplication in disguise.

While strictly incorrect, we can make these statements precise, at least under the imposition of two
caveats: when dimensions are finite and after choosing bases.

Corollary 2.31. 1. Suppose β is a basis of V and that dimF V = n. Then the co-ordinate represen-
tation ϕβ is an isomorphism

ϕβ : V → Fn : v 7→ [v]β

2. Additionally, suppose γ is a basis of W and that dimF W = m. Then the vector space of linear
maps L(V, W) is isomorphic to the space of matrices Mm×n(F) via the isomorphism

Φγ
β : L(V, W) → Mm×n(F) : T 7→ [T]γβ

This is really just the finite-dimensional version of Corollary 2.20, but with explicit isomorphisms.

Proof. The co-ordinate representation ϕβ is linear: if {e1, . . . , en} ⊆ Fn is the standard basis,

ϕβ(a1v1 + · · ·+ anvn) =

a1
...

an

 = a1e1 + · · ·+ anen = a1ϕβ(v1) + · · ·+ anϕβ(vn)

Since N (ϕβ) = {0V}, it is also plainly injective and thus an isomorphism.
Part 2 is similar.

A peculiar difficulty with this discussion is that it can be hard to disentangle a matrix A ∈ Mm×n(F)
from its associated linear map LA : Fn → Fm. For reference, we summarize everything here.

Corollary 2.32. Let A, B ∈ Mm×n(F).

1. If β, γ are the standard bases, then [LA]
γ
β = A

2. LA = LB ⇐⇒ A = B

3. LA+B = LA + LB and LλA = λLA for all λ ∈ F

4. If T ∈ L(Fn, Fm), then there is a unique C ∈ Mm×n(F) such that T = LC

5. If E ∈ Mn×p(F), then LAE = LALE

6. If m = n, then LIn = I

Everything should be straightforward to prove given our previous results.
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Exercises 2.3 1. Let T = LA ∈ L(R2) be left-multiplication by A =
( 1 −2

3 −1

)
.

(a) Find the matrix [T]β with respect to the basis β = {
(

1
1

)
,
(

2
3

)
}.

(b) Compute T(3i + 4j) in two different ways, and make sure your answers agree!

2. Consider the linear map T = d
dx ∈ L(P3(R), P2(R)).

(a) Compute [T]γβ with respect to the bases β = {1, x, x2, x3} and γ = {1 − x, 1 + x, x2 − 1}.

(b) Verify that multiplication by [T]γβ correctly computes the derivative of the polynomial
p(x) = 2 + 5x + 3x2 + x3.

(c) Let U ∈ L(P2(R), P1(R)) also be ‘differentiate,’ so that UT = d2

dx2 is the second-derivative.
Compute the matrices of T, U and check that [UT]δβ = [U]δγ[T]

γ
β when:

i. β, γ and δ are the standard bases of P3(R), P2(R) and P1(R) respectively.
ii. β = {1, x, x2, x3}, γ = {1 − x, 1 + x, x2 − 1} and δ = {1, x}

3. Define T ∈ L(P3(R), P4(R)) by T(g)(x) = (x − 1)g(x), let f (x) = x + 2x2 − 3x3 and suppose
β, γ are the standard bases.

(a) Compute [ f ]β and [(x − 1) f ]γ.
(b) Compute the matrix [T]γβ and check explicitly that [(x − 1) f ]γ = [T]γβ [ f ]β.

4. Let T : P3(R) → P3(R) be the function defined by

T( f )(x) = 2
∫ 1

0
f (t)dt − 3

d
dx

f (x)

(a) Give a short argument to justify the fact that T is linear.
(b) Compute the matrix [T]β of T with respect to the standard basis β of P3(R).
(c) Find an explicit expression for the linear map T2 ∈ L(P3(R)); that is, express T2( f )(x) in

terms of the integral and derivatives of f (x).
(d) Compute [T2]β using part (a), and check that it equals [T]2β.

5. (Recall Example 2.25.3) Let T ∈ L(R2) be the linear map ‘reflect across the line y = 2x.’ With
respect to the standard basis, show that its matrix is [T]ϵ = 1

5

( −3 4
4 3

)
.

6. Find a basis of R2 with respect to which the linear map ‘reflect across the line x + 3y = 0’ has a
diagonal matrix. Now find the matrix of this map with respect to the standard basis.

7. Let B be a fixed invertible n × n matrix. Prove that the following map is an isomorphism:

Ψ : Mn(F) → Mn(F) : A 7→ B−1AB

8. Compute the integral
∫
(2x − 3x2)e3x dx without using integration by parts.

(Hint: Let β = {e3x, xe3x, x2e3x} and invert the matrix of d
dx with respect to β. . . )

9. Give explicit proofs of Corollary 2.32 parts 1 & 5.

10. In the context of Corollary 2.31; suppose dimF V = n and that T : V → Fn is an isomorphism.
Prove that T = ϕβ for some basis β.
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2.4 The Change of Co-ordinate Matrix

Suppose V is finite-dimensional over F with distinct bases β, ϵ. We know from Corollary 2.31 that
the co-ordinate maps are isomorphisms V → Fn:

ϕβ(v) = [v]β, ϕϵ(v) = [v]ϵ

Since inverses and compositions of isomorphisms are also isomorphisms, it follows that

ϕϵ ◦ ϕ−1
β : Fn → Fn : [v]β 7→ [v]ϵ

is an isomorphism. Corollaries 2.32 and 2.31 force this isomorphism to be left-multiplication by an
invertible matrix:

∃Qϵ
β ∈ Mn(F) such that ∀v ∈ V, [v]ϵ = ϕϵ ◦ ϕ−1

β (v) = Qϵ
β[v]β (∗)

Definition 2.33. Qϵ
β is the change of co-ordinate matrix from β to ϵ.

Indeed (∗) makes it obvious how to compute: if β = {v1, . . . , vn} then [vj]β = ej is the jth standard
basis (column) vector of Fn, and so. . .

Lemma 2.34. The change of co-ordinate matrix from β to ϵ is the matrix of the identity linear map
with respect to these bases: if β = {v1, . . . , vn}, then,

Qϵ
β = [IV ]

ϵ
β =

(
[v1]ϵ · · · [vn]ϵ

)
It follows immediately that Qβ

ϵ = (Qϵ
β)

−1 and that Qγ
ϵ Qϵ

β = Qγ
β .

We are prioritizing ϵ in the above notation because, in many situations, one of the bases is a standard
basis. In such a case, one can simply state Qϵ

β and invert to obtain Qβ
ϵ , as the next example illustrates.

Example 2.35. Consider the basis β = {1 − 3x, 2 + 5x} of P1(R) and let ϵ = {1, x} be the standard
basis. Then

Qϵ
β = [IP1(R)]

ϵ
β =

(
[1 − 3x]ϵ [2 + 5x]ϵ

)
=

(
1 2
−3 5

)
=⇒ Qβ

ϵ =

(
1 2
−3 5

)−1

=
1
11

(
5 −2
3 1

)
To write, for instance p(x) = 3 − x in terms of β, compute

[p]β = Qβ
ϵ [p]ϵ =

1
11

(
5 −2
3 1

)(
3
−1

)
=

1
11

(
17
8

)
=⇒ 3 − x =

17
11

(1 − 3x) +
8

11
(2 + 5x)

While this approach doesn’t save any time for a single calculation, it is much more efficient when
one needs to convert many vectors to another basis. It is important to remember that the change
of co-ordinate matrix merely tells you how the co-ordinates of a vector v ∈ V change when a basis
changes: nothing happens to v itself!
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Example 2.36. Here is a 3-dimensional example. Consider the basis β = {1 + x, 2 − x2, 4 − x2} of
P2(R) and let ϵ = {1, x, x2} be the standard basis. Then

Qϵ
β =

(
[1 + x]ϵ [2 − x2]ϵ [4 − x2]ϵ

)
=

1 2 4
1 0 0
0 −1 −1

 =⇒ Qβ
ϵ =

1
2

 0 2 0
−1 1 −4
1 −1 2


To check that this makes sense, we check the co-ordinate representation of, say, p(x) = 2 + 3x + 4x2

with respect to β:

[p]β = Qβ
ϵ [p]ϵ =

1
2

 0 2 0
−1 1 −4
1 −1 2

2
3
4

 =

 3
− 15

2
7
2


p(x) = 3(1 + x)− 15

2
(2 − x2) +

7
2
(4 − x2)

which is easily verified to by multiplying out. Of course, all this is predicated on being willing to
invert a 3 × 3 matrix!

This process can be combined with matrix representations of linear maps.

Theorem 2.37. Let T ∈ L(V) where V has finite bases ϵ and β. Then the matrices of T satisfy

[T]β = Qβ
ϵ [T]ϵQϵ

β = Qβ
ϵ [T]ϵ(Q

β
ϵ )

−1

Proof. Simply apply the right hand side to the representation of any vector v ∈ V with respect to β:

Qβ
ϵ [T]ϵQϵ

β[v]β = Qβ
ϵ [T]ϵ[v]ϵ = Qβ

ϵ [T(v)]ϵ = [T(v)]β = [T]β[v]β

The matrices of a linear map with respect to different bases are therefore similar/conjugate.

Example 2.38. We revisit Example 2.25.3 in this language. Let T : R2 → R2 be reflection in the line
y = 2x, let ϵ = {i, j} be the standard basis and β = {v1, v2} = {i + 2j,−2i + j} be chosen to point
parallel/perpendicular to the line of reflection. Since T(v1) = v1 and T(v2) = −v2 we saw that

[T]β =

(
1 0
0 −1

)
The change of co-ordinate matrices are then

Qϵ
β = [IR2 ]ϵβ = ([v1]ϵ [v2]ϵ) =

(
1 −2
2 1

)
, Qβ

ϵ = (Qϵ
β)

−1 =
1
5

(
1 2
−2 1

)
The matrix of T with respect to the standard basis ϵ is therefore

[T]ϵ = Qϵ
β[T]βQβ

ϵ =

(
1 −2
2 1

)(
1 0
0 −1

)
· 1

5

(
1 2
−2 1

)
=

1
5

(−3 4
4 3

)
as we recovered earlier.
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Change of basis in general (non-examinable)

The discussion generalizes to linear maps T ∈ L(V, W) where we change bases of both spaces.

Theorem 2.39. Suppose T ∈ L(V, W), that V has bases β, ϵ, and W has bases γ, δ, where dim V = n
and dim W = m. Then

[T]γβ = Qγ
δ [T]

δ
ϵQϵ

β

where Qϵ
β ∈ Mn(F) and Qγ

δ ∈ Mm(F) are change of co-ordinate matrices. The relationships between
these objects is summarized in the picture:

v ∈ V T(v) ∈ W

[v]ϵ ∈ Fn [T(v)]δ ∈ Fm

[v]β ∈ Fn [T(v)]γ ∈ Fm

T

ϕϵ

ϕβ

[T]δϵ

[T]γβ

ϕδ

ϕγ

Qϵ
β Qγ

δ

Example 2.40. With respect to the standard bases ϵ = {1, x, x2, x3} and δ = {1, x, x2}, the derivative
operator T = d

dx ∈ L(P3(R), P2(R)) has matrix

[T]δϵ =

0 1 0 0
0 0 2 0
0 0 0 3


Consider new bases β = {1 + x, 1 − x, 2x + x2, x3 − 1} and γ = {1 − x, 2 + x2, x} of P3(R) and P2(R)
respectively. The matrix of T with respect to β and γ is then

[T]γβ =(Qδ
γ)

−1[T]δϵQϵ
β =

 1 2 0
−1 0 1
0 1 0

−10 1 0 0
0 0 2 0
0 0 0 3




1 1 0 −1
1 −1 2 0
0 0 1 0
0 0 0 1

=

1 −1 2 −6
0 0 0 3
1 −1 4 −6


We can check this on an example: written with respect to β, let

p(x) = 3(1 + x) + 2(1 − x)− 4(2x + x2) + 5(x3 − 1)

=⇒ [p′]γ = [T]γβ [p]β =

1 −1 2 −6
0 0 0 3
1 −1 4 −6




3
2
−4
5

 =

−37
15
−45


which comports with

p′(x) = 3 − 2 − 4(2 + 2x) + 15x2 = −37(1 − x) + 15(2 + x2)− 45x
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Exercises 2.4 1. Let ϵ = {i, j} be the standard basis of R2, and consider two further bases

β =
{
− i + 2j, 2i − j

}
, γ =

{
2i + 5j, −i − 3j

}
Find the change of co-ordinate matrices Qβ

ϵ , Qγ
ϵ and Qγ

β .

2. Let ϵ = {1, x, x2} and β = {1 − x, x + x2, x2 − 1}. Find the change of co-ordinate matrix Qβ
ϵ for

P2(F). Check your answer by finding constants a, b, c such that

2 + 7x − 4x2 = a(1 − x) + b(x + x2) + c(x2 − 1)

3. For each matrix A and basis β, find [LA]β and an invertible matrix Q such that [LA]β = Q−1AQ.

(a) A =

(
1 2
2 1

)
and β =

{(
1
1

)
,
(

1
−1

)}
(b) A =

( 13 1 4
1 13 4
4 4 10

)
and β =

{( 1
1
−2

)
,
( 1

−1
0

)
,
(

1
1
1

)}
4. Recall the trace of a n × n matrix: tr C =

n
∑

j=1
cjj.

(a) Prove that tr AB = tr BA, provided both AB and BA are square.
(b) Prove that if A and B are similar matrices (B = Q−1AQ for some Q), then tr A = tr B.

(The matrices of a linear map with respect to any two bases therefore always have the same trace)

5. Suppose β = {v1, . . . , vn} is a basis of Fn and that ϵ = {e1, . . . , en} is the standard basis. Prove
that Qβ

ϵ vk = ek for each k.

(In this context, Qβ
ϵ is sometimes called a change of basis matrix, though this only makes sense in Fn)

6. Let R reflect in the line through the origin making angle θ with the positive x-axis in R2.

(a) As in Example 2.38, use a change of co-ordinate matrix to find the matrix of R with respect
to the standard basis ϵ = {i, j}.

(b) If the line of reflection has gradient m, state [R]ϵ in terms of m. When m is a rational
number, what does this have to do with Pythagorean triples?

7. Let c and s be constants and consider the change of co-ordinates{
x = cu + sv
y = −su + cv

(∗)

That is, if x = [x]ϵ = ( x
y ) is viewed with respect to ϵ = {i, j}, then [x]β = ( u

v ) with respect to
some new basis β.

(a) Find β.
(b) The curve

7x2 − 6
√

3xy + 13y2 = 16

represents a conic in the plane. Assume that c = cos θ and s = sin θ for some unknown
angle θ. Substitute, using (∗), for u and v in order to find a value of θ ∈ [0, 90°) for which
the conic has no uv-term.
Use your understanding of the basis β and the resulting change of co-ordinates to sketch
the original conic.
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3 Elementary Matrix Operations and Systems of Linear Equations

3.1 Elementary Matrix Operations and Elementary Matrices

In this chapter we develop a (hopefully!) familiar method for comparing matrices.

Definition 3.1. An elementary row operation is one of three transformations of the rows of a matrix:

Type I: Swap two rows;

Type II: Multiply a row by a non-zero constant;

Type III: Add to one row a scalar multiple of another.

Matrices are row equivalent if there exists a finite sequence of elementary row operations transforming
one to the other.
The elementary matrices come in the same three families, each is the result of performing the corre-
sponding row operation to the identity matrix:

Type I: Eij is the identity matrix with rows i, j swapped;

Type II: E(λ)
i is the identity with the ith diagonal entry replaced by λ ̸= 0;

Type III: E(λ)
ij is the identity matrix with an additional λ in the ijth entry.

Example 3.2. In M2(R) the elementary matrices are as follows:

E12 =

(
0 1
1 0

)
, E(λ)

1 =

(
λ 0
0 1

)
, E(λ)

2 =

(
1 0
0 λ

)
, E(λ)

12 =

(
1 λ
0 1

)
, E(λ)

21 =

(
1 0
λ 1

)
By subtracting three times the first row from the second, we see that the following are row equivalent:(

1 4
−2 3

)
⇝
(

1 4
−5 −9

)
The crucial observation, stated in general below, is that this transformation is the result of multiplying
by the corresponding elementary matrix:

E(−3)
21

(
1 4
−2 3

)
=

(
1 0
−3 1

)(
1 4
−2 3

)
=

(
1 4
−5 −9

)

Theorem 3.3. Let T be an elementary row operation acting on m × n matrices.

1. T is an isomorphism of Mm×n(F) with itself. Its inverse is an operation of the same type.

2. T(A) = EA where E is the elementary matrix T(Im) obtained by applying T to the identity.

In particular, the inverses of the three types of elementary matrix are

E−1
ij = Eij,

(
E(λ)

i

)−1
= E(λ−1)

i ,
(

E(λ)
ij

)−1
= E(−λ)

ij
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Proof. Note first that row operations never mix columns and neither does matrix multiplication: if
a1, . . . , an are the columns of A, then

T(A) =
(
T(a1) · · ·T(an)

)
and EA =

(
Ea1 · · · Ean

)
It is therefore enough to prove the result when n = 1.

1. Suppose that T is of type III, adding to row i a multiple λ of row j. Let vr, wr denote the rth

entries of v, w ∈ Fm and let k be a scalar. The rth entry of T(kv + w) is plainly

(kvi + wi) + λ(kvj + wj) = k(vi + λvj) + (wi + λwj) if r = i
kvr + wr if r ̸= i

which is certainly the rth entry of kT(v) + T(w): thus T : Fm → Fm is linear. Its inverse is
plainly computed by subtracting from the ith row λ times the jth: an elementary operation of the
same type. Operations of types I and II are similar.

2. By part 1, T = LE ∈ L(Fm) for some invertible matrix E ∈ Mm(F). To compute E, simply apply
T to the standard basis ϵ = {e1, . . . , em}:

E =
(
[T(e1)]ϵ · · · [T(em)]ϵ

)
=
(
T(e1) · · ·T(em)

)
= T(e1 · · · en) = T(Im)

Column Operations Applying the above approach to columns yields the elementary column oper-
ations. Theorem 3.3 holds for column operations provided you multiply by matrices on the right
T(A) = AE and replace ‘row’ with ‘column.’

Example 3.4. Let E = E(3)
21 =

( 1 0 0
3 1 0
0 0 1

)
and compute:

(
a b c
d e f

)1 0 0
3 1 0
0 0 1

 =

(
a + 3b b c
d + 3e e f

)

E can be produced from the identity matrix by adding three times the second column to the first,
precisely the effect it has as a column operation when multiplying on the right.

Exercises 3.1 1. Let A =
(

2 4
1 7

)
and B =

(
1 7
0 1

)
.

(a) Find a sequence of elementary matrices EI , EI I , EI I I , of the types indicated, so that

B = EI I EI EI I I A

(b) Hence find a matrix C such that B = CA. Is C the only matrix satisfying this equation?
(c) Find another sequence of elementary matrices such that B = Ek · · · E1A.

2. Let A be an m × n matrix. Prove that if B can be obtained from A by an elementary row opera-
tion, then BT can be obtained from AT by the corresponding elementary column operation.
(This essentially proves Theorem 3.3 for column operations.)

3. For the matrices A, B in question 1, find a sequence of elementary matrices of any length/type
such that B = AE1 · · · Ek.
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3.2 The Rank of a Matrix and Matrix Inverses

Our goal is to use the row equivalence of matrices to provide systematic methods for computing
ranks and inverses of linear maps. First we translate the notions of rank and nullity to matrices.

Definition 3.5. The rank and nullity of a matrix A ∈ Mm×n(F) are the rank/nullity of the linear
map LA : Fn → Fm given by left-multiplication by A.

Our previous injectivity and surjectivity conditions immediately translate to this new language.

Lemma 3.6. Let A ∈ Mm×n(F) and LA : Fn → Fm be the corresponding linear map.

1. LA is injective ⇐⇒ rank A = n ⇐⇒ null A = 0

2. LA is surjective ⇐⇒ rank A = m ⇐⇒ null A = n − m

3. (When m = n) LA is an isomorphism ⇐⇒ A is invertible ⇐⇒ rank A = n ⇐⇒ null A = 0

We now come to the crucial observations that permit easy calculations of ranks and inverses.

Theorem 3.7. Let A = (a1, . . . , an) ∈ Mm×n(F) have columns aj ∈ Fn.

1. The column space Span{a1, . . . , an} of A has dimension rank A.

2. rank A is invariant under multiplication by invertible matrices: if P and Q are invertible, then

rank PA = rank AQ = rank A

Proof. 1. For any vector v ∈ Fn, write v = λ1e1 + · · ·+ λnen with respect to the standard basis
and observe that

λ1a1 + · · ·+ λnan = Av = LA(v)

It is clear from this that the column space and R(LA) are identical, whence rank A is the dimen-
sion of the column space.

2. We work with the range of the linear map LPA = LPLA(= LP ◦ LA):

R(LPA) = R(LPLA) = {PAv : v ∈ Fn} = LP(R(LA))

Since P is invertible, LP : R(LA) → LP(R(LA)) is an isomorphism, whence

dimR(LA) = dim LP(R(LA)) = dimR(LPA) =⇒ rank A = rank PA

The result for AQ is even easier: we leave it to an exercise.

By virtue of the theorem, we’ll denote the column space and nullspace of A by R(A) and N (A)
respectively rather than the lengthier R(LA) and N (LA).
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Computing the Rank of a Matrix Recall that elementary row/column operations act via multipli-
cation by invertible matrices: thus

Elementary row/column operations are rank-preserving

Examples 3.8. 1. Recall Example 3.2, where we saw the row equivalence of
(

1 4
−2 3

)
and

(
1 4
−5 −9

)
.

Since the columns of these are linearly independent, the column spaces of both are R2 and both
matrices plainly have rank 2. Indeed we can perform a sequence of row operations that make
the rank even more obvious:(

1 4
−2 3

)
E(2)

21−−→
(

1 4
0 11

)
E
( 1

11 )
2−−→

(
1 4
0 1

)
E(−4)

12−−→
(

1 0
0 1

)
Since all matrices have the same rank, the original clearly has rank 2.

2. Since 2 × 2 matrices are small, the row operation approach wasn’t required. For a larger matrix
however, it can be invaluable. For instance:

A =


1 1 0 3
2 0 1 1
0 1 2 0
0 2 5 −1
2 1 1 3

 E(−2)
21 E(−2)

51−−−−−→


1 1 0 3
0 −2 1 −5
0 1 2 0
0 2 5 −1
0 −1 1 −3

 E(−1)
13 E(2)

23 E(−2)
43 E(1)

53−−−−−−−−−→


1 0 −2 3
0 0 5 −5
0 1 2 0
0 0 1 −1
0 0 3 −3



E(2)
14 E(−5)

24 E(−2)
34 E(−3)

54−−−−−−−−−−→


1 0 0 1
0 0 0 0
0 1 0 2
0 0 1 −1
0 0 0 0

 E34E23−−−→


1 0 0 1
0 1 0 2
0 0 1 −1
0 0 0 0
0 0 0 0


Since the fourth column is a linear combination of the first three (linearly independent)
columns, we conclude that rank A = 3. Alternatively, we could repeat using with column
operations:

1 1 0 3
2 0 1 1
0 1 2 0
0 2 5 −1
2 1 1 3

 −→ · · · −→


1 0 0 0
0 0 1 0
−4 5 −3 0
−10 12 −7 0

0 1 0 0


The first three columns are linearly independent, so again the rank is three. If we used a mixture
of row and column operations, we could eventually transform A into the rank 3 matrix

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


53



Row or Column Operations: which to use? If your only purpose is to compute ranks, mixing row
and column operations is fine. If you want something else, you may wish to stick to only one type:
here’s why.

Row Operations preserve the span of the rows of a matrix (the row space). This is important when
matrices represent linear systems of equations. For example, below we transform a system of
equations and the corresponding augmented matrix using row operations:{

x + 3y = 1
2x − y = 16

(
1 3
2 −1

)(
x
y

)
=

(
1
16

) (
1 3 1
2 −1 16

)
{

x + 3y = 1
−7y = 14

(
1 3
0 −7

)(
x
y

)
=

(
1
14

) (
1 3 1
0 −7 14

)
{

x + 3y = 1
y = 2

(
1 3
0 1

)(
x
y

)
=

(
1
2

) (
1 3 −1
0 1 2

)
{

x = −1
y = 2

(
1 0
0 1

)(
x
y

)
=

(−1
2

) (
1 0 −1
0 1 2

)
This familiar method relies on the fact that row-equivalent linear systems have identical solu-
tions. When viewed as a matrix system (middle column) it should be clear that multiplication
by elementary matrices must occur on the left.

Column Operations preserve the column space of a matrix. For instance, the above example shows
that a simple basis of the column space of A is given by{( 1

0
−4
−10

0

)
,

( 0
0
5

12
1

)
,

( 0
1
−3
−7
0

)}

Row operations will change the column space and vice versa. If knowing these is important to you,
stick to one type of operation!

The example generalizes:

Theorem 3.9. A matrix A ∈ Mm×n(F) has rank A = r if and only if there exists a finite sequence of
row and column operations transforming A to the matrix

D =

(
Ir Or×(n−r)

O(m−r)×r O(m−r)×(n−r)

)
Here Ir is the r × r identity, with the remaining pieces being zero matrices of the given dimensions.
Otherwise said, there exist elementary m × m matrices R1, . . . , Rk and elementary n × n matrices
C1, . . . , Cℓ such that

Rk · · · R1 AC1 · · ·Cℓ = D

The proof is too long to give in full, but can be proved by tedious induction on the number of rows
of A. We are far more interested in some corollaries, particularly involving the maximal rank case,
that is when A is invertible.
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Computing the inverse of a matrix Everything follows from a simple corollary.

Corollary 3.10. Every invertible matrix A is a product of elementary matrices.

In light of the Corollary, the last line of Theorem 3.9 can be rewritten so say that

rank A = r ⇐⇒ ∃invertible P, Q such that PAQ = D

Proof. If A ∈ Mn(F) is invertible, then rank A = n whence D = In. It follows that there exist products
P, Q of elementary matrices such that

PAQ = In =⇒ A = P−1Q−1

By Theorem 3.3, the right hand side and thus A is a product of elementary matrices.

The proof yields a systematic method for calculating inverses:

• The identity matrix In = QPA is the result of applying a sequence of row operations to A.

• A−1 = QP = QPIn is the result of applying the same sequence to In.

• Since row operations never mix up columns, we can find A−1 by applying row operations to
the augmented matrix (A | I) until the left side is the identity: the right side will then be A−1, i.e.

(A | I) is row equivalent to (I | A−1)

Example 3.11. We compute the inverse of A =
(

1 2 3
0 2 0
3 0 1

)
by applying row operations to (A | I3):1 2 3 1 0 0

0 2 0 0 1 0
3 0 1 0 0 1

 E(−1)
12−−→

1 0 3 1 −1 0
0 2 0 0 1 0
3 0 1 0 0 1

 E
( 1

2 )
2−−→

1 0 3 1 −1 0
0 1 0 0 1

2 0
3 0 1 0 0 1


E(−3)

31−−→
1 0 3 1 −1 0

0 1 0 0 1
2 0

0 0 −8 −3 3 1

 E
(− 1

8 )
3−−−→

1 0 3 1 −1 0
0 1 0 0 1

2 0
0 0 1 3

8 − 3
8 − 1

8


E(−3)

13−−→
1 0 0 − 1

8
1
8

3
8

0 1 0 0 1
2 0

0 0 1 3
8 − 3

8 − 1
8

 =⇒ A−1 =
1
8

−1 1 3
0 4 0
3 −3 −1


It can easily be checked by multiplication that we have found the correct inverse matrix: the above
indeed shows how to write A as a product of elementary matrices

I3 = E(−3)
13 E(− 1

8 )
3 E(−3)

31 E( 1
2 )

2 E(−1)
12 A

=⇒ A = E(1)
12 E(2)

2 E(3)
31 E(−8)

3 E(3)
13 =

1 1 0
0 1 0
0 0 1

1 0 0
0 2 0
0 0 1

1 0 0
0 1 0
3 0 1

1 0 0
0 1 0
0 0 −8

1 0 3
0 1 0
0 0 1


It is also acceptable, though non-standard, to perform column operations on the augmented matrix(

A
In

)
: just remember never to mix the two types of operation when computing the inverse!
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Corollary 3.12. For any matrix A we have rank A = rank AT.

Proof. D = PAQ =⇒ DT = QT ATPT. Since QT and PT are invertible, we immediately see that
rank AT = rank DT. But rank DT clearly equals r = rank D = rank A.

In particular, the dimension of the row space (span of the rows of A) is also rank A.

Maximum and Minimum Ranks of Compositions

As a final application we consider the rank of a composition in terms of its factors.

Example 3.13. If rank A = 3 and rank B = 2, we can appeal to block matrices such as in Theorem
3.9 to consider possible ranks of the product AB:

• A =
( 1 0 0

0 1 0
0 0 1

)
, B =

(
1 0
0 1
0 0

)
: AB = B =⇒ rank AB = 2

• A =
( 1 0 0 0

0 1 0 0
0 0 1 0

)
, B =

( 0 0 0
0 0 0
1 0 0
0 1 0

)
: AB =

( 0 0 0
0 0 0
1 0 0

)
=⇒ rank AB = 1

• A =
( 1 0 0 0 0

0 1 0 0 0
0 0 1 0 0

)
, B =

( 0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

)
: AB =

(
0 0 0
0 0 0
0 0 0

)
=⇒ rank AB = 0

As the next result shows, these are essentially all the possibilities.

Theorem 3.14. Let S : U → V and T : V → W be linear maps, thena

rank S − null T ≤ rank TS ≤ min
(
rank T, rank S

)
max

(
null S, dim U − rank T

)
≤ null TS ≤ null T + null S

The same relationships hold for matrices A, B, provided the product is AB is defined.

aThe upper bounds are easier to remember due to their symmetry: use the rank–nullity theorem to recover the lower
bounds instead of memorizing them!

Proof. If w ∈ R(TS), then w = T(S(u)) for some u ∈ U, from which w ∈ R(T). We conclude that

R(TS) ≤ R(T) =⇒ rank TS ≤ rank T

If this were a claim about matrices, Corollary 3.12 could deal with the other part of the minimum:
rank AB = rank(AB)T = · · · . Instead we consider null spaces and apply the rank-nullity theorem:

u ∈ N (S) =⇒ S(u) = 0 =⇒ TS(u) = 0 =⇒ u ∈ N (TS)

from which

N (S) ≤ N (TS) =⇒ null S ≤ null TS =⇒ dim U − rank S ≤ dim U − rank TS
=⇒ rank TS ≤ rank S

The remaining inequalities are an exercise.
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Example 3.15. Let A ∈ M6×5(R) and B ∈ M5×4(R), and suppose that rank A = 4 and rank B = 3.
We find the maximum and minimum possible ranks of the product AB and give examples in each
case.
First observe that since LA : R5 → R6, the rank–nullity theorem says that null A = 5 − rank A = 1.
Similarly null B = 4 − 3 = 1.
By the Theorem,

2 = rank B − null A ≤ rank AB ≤ min(rank A, rank B) = 3

It is easy to cook up explicit matrices satisfying rank AB = 3 as in the previous example: for instance

A =

(
I4 O4×1

O2×4 O2×1

)
=

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 , B =

( 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

)
=⇒ AB =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


The idea for maximum ranks is to have the identity submatrices inside A and B overlap as much as
possible.
By trying to make the identities overlap as little as possible—essentially squeezing as much of the
range of A into the nullspace of A—we should can also create a minimal rank example: for instance,
with the same A as above,

B =

( 0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
=⇒ AB =

 0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


Exercises 3.2 1. For each of the following matrices, compute the rank and the inverse if it exists:

(a)
(

1 2
2 4

)
(b)

( 0 −2 4
1 1 −1
2 4 5

)
(c)

( 1 0 1 1
1 1 −1 2
2 0 1 0
0 −1 1 −3

)
2. For each of the following linear transforms T, find the matrix of the linear map with respect to

the standard bases, determine whether T is invertible, and compute T−1, if it exists.

(a) T : P2(R) → P2(R) defined by T( f )(x) = (x + 1) f ′(x)

(b) T : R3 → P2(R) defined by T
( a

b
c

)
= (a + b + c) + (a − b + c)x + ax2

(c) T : M2(R) → R4 defined by T(A) =

( tr A
tr AT

tr(EA)
tr(AE)

)
where E =

(
0 1
1 0

)
3. (a) Find A ∈ M3×4(R) and B ∈ M4×3(R) such that rank A = rank B = 2 and rank AB = 1.

(b) Suppose that A ∈ M4×3(R) and B ∈ M3×5(R) have rank A = 2 and rank B = 3. What is
rank AB?

4. (a) Let S ∈ L(U, V) and T ∈ L(V, W). Prove that

null TS ≤ null T + null S

Now apply the Rank–Nullity Theorem to finish the proof of Theorem 3.14.
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(b) Let A =
( Ia O

O O

)
, B =

(
Ib O
O O

)
and C =

(O O
O Ic

)
where a, b, c are the ranks of A, B, C respec-

tively, and O indicates the zero matrix of the appropriate size. Suppose that

A ∈ Mm×n(F), B, C ∈ Mn×p(F)

Compute AB and AC and check that

rank AB = min(rank A, rank B) and rank AC = max(0, rank C − null A)

This shows that the maximal and minimal ranks indicated in the Theorem can actually be achieved;
the only caveat being that rank C − null A could be negative!

5. Prove that for any m × n matrix A, we have rank A = 0 ⇐⇒ A is the zero matrix.

6. (a) Prove that matrices A, B ∈ Mm×n(F) have the same rank if and only if B = PAQ for some
invertible P, Q.

(b) Suppose that T ∈ L(V, W) is a linear map between finite-dimensional vector spaces. Show
that rank[T]γβ is independent of the choice of bases β and γ.

(Of course, this value equals rank T itself!)

7. Write the invertible matrix A =

(
3 2
10 6

)
as a product of elementary matrices.

For a challenge, see if you can do this for a general invertible matrix.

8. Let T ∈ L(V, W) be given and suppose that P ∈ L(W) and Q ∈ L(V) are isomorphisms. Prove
that

rank PT = rank TQ = rank T

(Your argument must work in infinite dimensions and thus without matrices)

58



4 Determinants

To a square matrix A, it turns out that we can attach a single number, its determinant, which encapsu-
lates the extent to which the linear map LA enlarges or contracts space.
For instance, consider a 2 × 2 matrix A =

(
a b
c d

)
. Its columns are the

result of multiplying the standard basis vectors i, j by A:

Ai =
(

a
c

)
Aj =

(
b
d

)
For simplicity, suppose a, b, c, d > 0 and that the columns are ori-
ented as in the picture. The unit square spanned by i, j is transformed
by A to a parallelogram, whose area is

(a + b)(c + d)− 2bc − 2 · 1
2

bd − 2 · 1
2

ac = ad − bc

Ai

Aj

0
0

a

d

c

b a + b

c + d

This one number neatly summarizes how left-multiplication by A changes the area of a shape.

4.1 Determinants of Order 2

Definition 4.1. The determinant det A = |A| of a 2 × 2 matrix A =
(

a b
c d

)
is the scalar

det A = ad − bc

Example 4.2. If A =
(

1 2
4 3

)
and B =

( 5 0
1 −2

)
, then

det A = 1 · 3 − 2 · 4 = −5, det B = 5 · (−2)− 0 · 1 = −10

Note that det : M2(F) → F is a non-linear function; for instance

det(A + B) =
∣∣∣∣6 2
5 1

∣∣∣∣ = 6 − 10 = −4 ̸= det A + det B

However, determinant does play nicely with matrix multiplication:

det AB =

∣∣∣∣ 7 −4
23 −6

∣∣∣∣ = −42 + 92 = 50 = det A det B

In the following results, we summarize the key properties of order 2 determinants: with the exception
of the explicit inverse formula, these will eventually be seen to hold in higher dimensions.

Theorem 4.3 (Basic properties of order-two determinants). 1. det AT = det A

2. det A = 0 if and only if the columns (rows) of A are parallel (linearly dependent).

3. Determinant is a bilinear function of the columns (rows) of A.

4. det AB = det A det B

59



These are easily verified directly: write A =
(

a b
c d

)
, B = ( p q

r s ), etc. The third property benefits from a
little expansion: writing a matrix in terms of its columns, determinant can be thought of as a function

det : F2 × F2 → F : (a1 a2) 7→ det(a1 a2)

and property 3 claims that

det(λu + v, w) = λ det(u, w) + det(v, w) and det(u, λv + w) = λ det(u, v) + det(u, w)

and similarly with regard to the rows of a matrix (a pair of row vectors).

Example 4.4. The fact that the first rows are identical means we can combine

−24 = −5 − 19 = det
(

1 2
4 3

)
+ det

(
1 2
5 −9

)
= det

(
1 2
9 −6

)
= −6 − 18 = −24

Properties 2 and 3 partly overlap with the effect of row/column operations on determinant.

Corollary 4.5 (Row/column operations).

Type I: Swapping rows (or columns) changes the sign of det A

Type II: Multiplying a row (or column) by λ multiplies det A by λ

Type III: Adding a multiple of one row (or column) to another leaves det A unchanged

Proof. Simply combine the product formula with the list of all elementary matrices

det EA = det AE = det E det A

Type Matrices Determinant
I

(
0 1
1 0

)
det E = −1

II
(

λ 0
0 1

) (
1 0
0 λ

)
det E = λ

III
(

1 λ
0 1

) (
1 0
λ 1

)
det E = 1

Alternatively you can compute all possibilities directly.

Corollary 4.6 (Inverses). A is invertible (non-singular) if and only if det A ̸= 0. In such a case,
det A−1 = 1

det A and

A =

(
a b
c d

)
=⇒ A−1 =

1
det A

(
d −b
−c a

)

Proof. (⇒) If A is invertible, the product formula tells us that

1 = det I2 = det(AA−1) = det A det A−1 =⇒ det A ̸= 0 and det A−1 =
1

det A

(⇐) Observe that(
a b
c d

)(
d −b
−c a

)
=

(
ad − bc 0

0 ad − bc

)
= (det A)I2

If det A ̸= 0, we divide by det A to see that A has an inverse given by the desired expression.
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Oriented Area and the Determinant

In the introduction, we considered a basic example of how determinant relates to area. We now
proceed more formally.
Let A =

(
a b
c d

)
=
(
u v
)

be written in terms of its columns: we consider the parallelogram P obtained
by applying A to the unit square, i.e. P is spanned by the vectors u = Ai and v = Aj.
First observe (Theorem 4.3, part 2) that

det A = det(u, v) = 0 ⇐⇒ u, v are parallel ⇐⇒ P has zero area

This gives a pictorial way to understand zero determinant and lack of invertibility: if u, v are parallel
then any purported inverse would map these to parallel vectors A−1u, A−1v which couldn’t span the
original unit square! A linear map can scale area, but it cannot create area out of nothing.
Now consider the case when det A ̸= 0. In particular, this requires at least one of a, c ̸= 0. It
is straightforward to check that the matrix R = 1√

a2+c2 (
a c
−c a ) acts by counter-clockwise rotation and

therefore preserves area. Now compute,

RA =
1√

a2 + c2

(
a c
−c a

)(
a b
c d

)
=

1√
a2 + c2

(
a2 + c2 ab + cd

0 det A

)
(∗)

Since a2 + c2 > 0, we see that the sign of det A determines whether we rotate counter-clockwise
(det A > 0) or clockwise (det A < 0) to get from the first to the second column of A.

Definition 4.7. An ordered pair of vectors (u, v) in R2 is positively-oriented if det(u, v) > 0 and
negatively-oriented if det(u, v) < 0.

1

2

3

−4 −3 −2 −1 0 1

u
v

−1

1

2

3

−2 −1 1 2 3 4

u

v

Positively-oriented: counter-clockwise rotation Negatively-oriented: clockwise rotation

det(u, v) =
∣∣∣∣1 −4
3 2

∣∣∣∣ = 14 > 0 det(u, v) =
∣∣∣∣−2 4

3 −1

∣∣∣∣ = −10 < 0

A short exercise following from (∗) results in a complete proof of the following:

Theorem 4.8. The area of the parallelogram spanned by the columns of A is

• det A if the columns are positively-oriented;

• −det A if the columns are negatively-oriented.

As such, det A is often known as the oriented area of a parallelogram.
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Exercises 4.1 1. Compute the determinants of the following matrices and, if possible, their inverses:

(a)
(

1 4
7 −3

)
∈ M2(R) (b)

( i 1+i
1 i

)
∈ M2(C) (c)

(
3 2
1 4

)
∈ M2(Z5) (d)

(
1 2
3 4

)
∈ M2(Z5)

(Recall that Z5 = {0, 1, 2, 3, 4} is the field of remainders modulo 5)

2. Explicitly prove all parts of Theorem 4.3.

3. Find the area of the triangles (a triangle is half a parallelogram. . . ):

(a) With vertices (0, 0), (2, 4) and (1,−2).

(b) With vertices (2, 1), (3,−2) and (−5, 4).

4. (a) Show that the matrix R = 1√
a2+c2 (

a c
−c a ) acts by counter-clockwise rotation.

(Hint: the columns of R are related by
(

0 −1
1 0

)
( a
−c ) = ( c

a ))

(b) Complete the proof of Theorem 4.8.

5. Let F be a field and ∆ : F2 × F2 → F be a bilinear function: ∀u, v, w ∈ F2, λ ∈ F,

∆(λu + v, w) = λ∆(u, w) + ∆(v, w) and ∆(u, λv + w) = λ∆(u, v) + ∆(u, w)

(a) We say that ∆ is alternating if ∆(u, u) = 0 for all u ∈ F2.

i. Prove that ∆ alternating =⇒ ∆(v, u) = −∆(u, v) for all u, v.
ii. Prove the converse to part (a) (provided 2 ̸= 0 in F!).

(b) Prove that if ∆ is an alternating bilinear function satisfying ∆(i, j) = 1, then ∆ = det.

6. (A link to multivariable calculus) Let D, E ⊆ R2 and T : D → E be a change of co-ordinates

T(u, v) =
(
x(u, v), y(u, v)

)
Assume T is bijective and that the partial derivatives of x, y with respect to u, v exist and are
continuous. Note that T does not have to be linear!
Let P = (u0, v0) ∈ D, and consider small positive quantities ∆u, ∆v to define points

Q = (u0 + ∆u, v0), R = (u0, v0 + ∆v)

The area of the parallelogram spanned by
−→
PQ = i∆u and

−→
PR = j∆v is therefore ∆u∆v.

Prove that the parallelogram spanned by
−−−−−−→
T(P)T(Q) and

−−−−−−→
T(P)T(R) has

Area ≈
∣∣∣∣det

(
xu(P) xv(P)
yu(P) yv(P)

)∣∣∣∣∆u∆v

where xu = ∂x
∂u , etc., denote partial derivatives.

This determinant is the Jacobian J(T) = ∂(x,y)
∂(u,v) . The above is essentially the justification for the change

of variables formula for double integrals:∫∫
E

f (x, y)dxdy =
∫∫

D
f
(
x(u, v), y(u, v)

) ∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dudv

62



4.2 Higher-Order Determinants

We now extend the definition of determinant to any size of square matrix. The goal is to establish all
the basic properties seen for order 2 determinants. This will take a little time. . .

Definition 4.9. Let A ∈ Mn(F). For each i, j we defined the ijth minor of A to be the matrix Ãij

obtained by deleting the ith row and jth column of A. The determinant of A to be the sum

det A =
n

∑
j=1

(−1)1+ja1j det Ã1j = a11 det Ã11 − a12 det Ã12 + · · ·+ (−1)1+na1n det Ã1n

This is known as the cofactor expansion of det A along the first row of A.

The difficulty should be immediately obvious: the definition is inductive! For instance the determi-
nant of A ∈ M4(F) is defined in terms of the four 3 × 3 determinants, each of which is computed
using three 2 × 2 determinants: in total we need twelve order 2 determinants!

Example 4.10. Let A =

( 1 0 2 −3
0 1 2 −1
−2 3 2 6
1 2 1 1

)
, then

det A = 1

∣∣∣∣∣∣
1 2 −1
3 2 6
2 1 1

∣∣∣∣∣∣− 0

∣∣∣∣∣∣
0 2 −1
−2 2 6
1 1 1

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
0 1 −1
−2 3 6
1 2 1

∣∣∣∣∣∣− (−3)

∣∣∣∣∣∣
0 1 2
−2 3 2
1 2 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 2 −1
3 2 6
2 1 1

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
0 1 −1
−2 3 6
1 2 1

∣∣∣∣∣∣+ 3

∣∣∣∣∣∣
0 1 2
−2 3 2
1 2 1

∣∣∣∣∣∣
Next we compute the remaining 3 × 3 determinants using the cofactor expansion:

det A =

(∣∣∣∣2 6
1 1

∣∣∣∣− 2
∣∣∣∣3 6
2 1

∣∣∣∣+ (−1)
∣∣∣∣3 2
2 1

∣∣∣∣)
+ 2

(
0
∣∣∣∣3 6
2 1

∣∣∣∣− ∣∣∣∣−2 6
1 1

∣∣∣∣+ (−1)
∣∣∣∣−2 3

1 2

∣∣∣∣)
+ 3

(
0
∣∣∣∣3 2
2 1

∣∣∣∣− ∣∣∣∣−2 2
1 1

∣∣∣∣+ 2
∣∣∣∣−2 3

1 2

∣∣∣∣)
=

∣∣∣∣2 6
1 1

∣∣∣∣− 2
∣∣∣∣3 6
2 1

∣∣∣∣− ∣∣∣∣3 2
2 1

∣∣∣∣− 2
∣∣∣∣−2 6

1 1

∣∣∣∣− 2
∣∣∣∣−2 3

1 2

∣∣∣∣− 3
∣∣∣∣−2 2

1 1

∣∣∣∣+ 6
∣∣∣∣−2 3

1 2

∣∣∣∣
Each of the remaining 2 × 2 determinants can now be evaluated:

det A = −4 − 2(−9)− (−1)− 2(−8)− 2(−7)− 3(−4) + 6(−7) = 15

While the above calculation was assisted by the fact that we only needed to compute three 3 × 3
determinants, it is still very slow-going. As the order n gets larger, things becomes ugly very quickly.
In order to facilitate more rapid calculations it is useful to develop some of the properties we saw in
the previous section. We begin by computing the determinant of the n × n identity matrix In: The
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cofactor expansion along the first row yields

det In = 1 · det In−1 − 0 det ˜(In)12 + 0 det ˜(In)13 − · · ·+ (−1)1+n · 0 det ˜(In)1n = det In−1

By induction, since det I2 = 1, we conclude:

Lemma 4.11. det In = 1.

The next result combines several basic properties, all of which we have checked for order 2 determi-
nants. Several of the arguments rely on lengthy inductions.

Theorem 4.12. 1. det : Mn(F) → F is a linear function of each row when the other rows are fixed.

2. If A has a row of zeros, then det A = 0.

3. The determinant can be evaluated using the cofactor expansion along any row:

det A =
n

∑
j=1

(−1)i+jaij det Ãij

4. If A has two identical rows then det A = 0.

Sketch Proof. 1. This is by induction. We know the statement is true for all 2 × 2 matrices. Fix n
and suppose the claim is true for all n × n matrices. Let A be order n + 1, with ith row a linear
combination

aT
i = λbT

i + cT
i (∗)

Also let B, C be the matrices obtained by replacing row i of A with bT and cT respectively. There
are two cases.

(a) If i = 1, then the cofactor expansion along the first row is plainly linear since B, C have the
same minors as A:

a1j = λbj + cj =⇒ det A =
n+1

∑
j=1

(−1)1+j(λbj + cj)
∣∣Ã1j

∣∣ = λ det B + det C

(b) If i > 1, then each of the n × n minors Ã1j has its (i − 1)th row observing the same linear
combination (∗). By the induction hypothesis,

det A =
n+1

∑
j=1

(−1)1+ja1j
∣∣Ã1j

∣∣ = n+1

∑
j=1

(−1)1+ja1j(λ
∣∣B̃1j

∣∣+ ∣∣C̃1j
∣∣) = λ det B + det C

2. Re-run the proof of part 1 without C and taking λ = 0: i.e. suppose (∗) is simply aT = 0bT

where bT is any row vector.

3. We omit the argument since it requires a long induction based on parts 1 and 2.

4. This is Exercise 4.2.5.
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Examples 4.13. 1. Look for rows with many zeros when computing the determinant! Compare, for
instance, the cofactor expansions of the following along the first and second rows:

First row: det
( 5 3 2

0 0 2
7 2 1

)
= 5

∣∣ 0 2
2 1

∣∣− 3
∣∣ 0 2

7 1

∣∣+ 2
∣∣ 0 0

7 2

∣∣ = 5 · (−4)− 3 · (−14) + 2 · 0 = 22

Second row: det
( 5 3 2

0 0 2
7 2 1

)
= −0 + 0 − 2

∣∣ 5 3
7 2

∣∣ = 22

2. Here we take advantage of linearity and the fact that the first two rows are nearly identical
before expanding along the second row of the resulting 3 × 3 determinant:

det
( 1 2 3 4

1 2 3 0
1 2 0 −1
1 0 2 5

)
=

∣∣∣∣ 1 2 3 4
1 2 3 4
1 2 0 −1
1 0 2 5

∣∣∣∣− ∣∣∣∣ 1 2 3 4
0 0 0 4
1 2 0 −1
1 0 2 5

∣∣∣∣ = 0 − 4
∣∣∣ 1 2 3

1 2 0
1 0 2

∣∣∣ = −4
(
−
∣∣ 2 3

0 2

∣∣+ 2
∣∣ 1 3

1 2

∣∣) = 24

Elementary matrices and the determinant

We now consider the effect of elementary row operations on the determinant.

Corollary 4.14. Let A be an n × n matrix and let E an elementary matrix. For each type:

Type I: det EA = −det A, and det E = −1;

Type II: If E multiplies a row by λ, then det EA = λ det A, and det E = λ;

Type III: det EA = det A and det E = 1.

Warning! Multiplying every row by λ yields det(λA) = λn det A

It is worth taking stock for a moment:

• For order two determinants (Corollary 4.5) these results followed from the multiplicative prop-
erty det AB = det A det B.

• For higher order, we need to prove directly (using Theorem 4.12). Indeed the Corollary estab-
lishes the limited multiplicative property det EA = det E det A whenever E is elementary. We
will use this fact in the next section to prove the full multiplication formula.

Proof. 1. See Exercise 4.2.5

2. Suppose E = E(λ)
i multiplies row i by λ. Since det is linear in each row, we immediately see

that det EA = λ det A.

3. Suppose E(λ)
ik adds λ times row k to row i. Since determinant is linear in row i, we see that

det EA = det A + λ det B

where B is the matrix obtained from A by replacing row i with row k. Since B has two identical
rows, we conclude that det EA = det A.

Letting A = In in each case gives the advertised values for det E.
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Examples 4.15. 1. In case the argument for part 3 of the theorem is unclear, here is an example: if
E = E(5)

21 =
(

1 0
5 1

)
and A =

(
4 2
3 −1

)
, then

B =

(
4 2
4 2

)
and det EA = det

(
4 2

3 + 20 −1 + 10

)
= det

(
4 2
3 −1

)
+ 5 det

(
4 2
4 2

)
2. We can use all the above results to assist us in computing determinants. For instance,

det


1 1 2 −3
0 3 1 0
0 1 2 −1
2 7 4 −6

 = 0 + 3

∣∣∣∣∣∣
1 2 −3
0 2 −1
2 4 −6

∣∣∣∣∣∣−
∣∣∣∣∣∣
1 1 −3
0 1 −1
2 7 −6

∣∣∣∣∣∣+ 0 (cofactor expansion 2nd row)

= 3

∣∣∣∣∣∣
1 2 −3
0 2 −1
0 0 0

∣∣∣∣∣∣−
∣∣∣∣∣∣
1 1 −3
0 1 −1
0 5 0

∣∣∣∣∣∣ (type III row operations simplify third rows)

= 0 −
(

0 − 5
∣∣∣∣1 −3
0 −1

∣∣∣∣+ 0
)

(equal rows/cofactor expansion along third row)

= 5(−1 − 0) = −5

We are now in a position to establish the relationships between determinant, products and inverses.

Theorem 4.16. Let A, B ∈ Mn(F). Then:

1. det AB = det A det B

2. A is invertible ⇐⇒ det A ̸= 0, in which case det A−1 = 1
det A

Proof. We first establish both results when A is non-invertible (singular). Since the row space has
dimension rank A < n, at least one row (row i say) is a linear combination of the others:

aT
i = ∑

k ̸=i
ckaT

k

Applying row operations of type III, namely multiplication by E(−ck)
ik , we see that

det A = det

(
∏
k ̸=i

E(−ck)
ik A

)
= 0

since the right hand matrix has row i identically zero. Moreover, rank AB ≤ rank A < n so that AB
is also singular. We conclude that det AB = 0 = det A det B.
Now suppose A is invertible. Then A = Ek · · · E1 is a product of elementary matrices. The the
multiplicative property for elementary matrices (Corollary 4.14) now proves the general result!

det AB = det Ek · · ·det E1 det B = det(Ek · · · E1)det B = det A det B

Let B = I to see that det A = det Ek · · ·det E1 ̸= 0. Finally, let B = A−1 to see that

1 = det In = det AA−1 = det A det A−1 =⇒ det A−1 =
1

det A
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Only one basic property of determinant now remains.

Theorem 4.17. det AT = det A.

Proof. First observe that det A = 0 ⇐⇒ det AT = 0, since rank A = rank AT.

Suppose now that A is invertible. Then A = Ek · · · E1 is the product of elementary matrices. But then

AT = ET
1 · · · ET

k

is also the product of elementary matrices. Moreover, ET
i is an elementary matrix of the same type

and determinant as Ei. It follows that

det AT = det ET
1 · · ·det ET

k = det E1 · · ·det Ek = det A

Any statements regarding rows or row operations now apply equally to columns and vice versa. In
particular, we may compute det A using the cofactor expansion along any row or down any column.

det A =
n

∑
j=1

(−1)i+jaij det Ãij (expansion along ith row)

=
n

∑
i=1

(−1)i+jaij det Ãij (expansion along jth column)

Example 4.18. It is sensible to evaluate the determinant of the following matrix using the cofactor
expansion down the 3rd column:

det
( 1 2 0 4

−2 3 1 5
2 4 2 8
−1 −3 0 2

)
= −

∣∣∣ 1 2 4
2 4 8
−1 −3 2

∣∣∣+ 2
∣∣∣ 1 2 4
−2 3 5
−1 −3 2

∣∣∣ = 0 + 2
∣∣∣ 1 2 4

0 7 13
0 −1 6

∣∣∣ (rank = 0 and row operations)

= 2
∣∣∣∣ 7 13
−1 6

∣∣∣∣ = 110 (cofactor first column)

Order 3 Determinants and Volume

As in two dimensions, we have a geometric interpretation.

Theorem 4.19. Let A = (u, v, w) ∈ M3(R) have columns u, v, w.

1. det A = [u, v, w] = u · (v × w) is the scalar triple product of its columns

2. The volume of the parallelepiped spanned by u, v, w is given by |det A|.

The ordered triple (u, v, w) is said to be positively-oriented if
det A > 0. By the theorem, this is if and only if u lies on the
same side of the the v, w-plane as the normal vector v × w: this
is the familiar right-hand rule. The picture represents a positively
oriented triple.
One can also extend this interpretation of oriented volume to
higher dimensions.
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Example 4.20. The parallelepiped spanned by the vectors
{(

1
1
2

)
,
(

0
2
6

)
,
( −1

1
−2

)}
has volume

∣∣∣det
( 1 0 −1

1 2 1
2 6 −2

)∣∣∣ = |−12| = 12

Since the determinant is negative, the three vectors are negatively-oriented.

Cramer’s Rule

Finally, we present an application to the solution of n × n systems of linear equations Ax = b:
a11x1 + · · ·+ a1nxn = b1

...
an1x1 + · · ·+ annxn = bn

where A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 , x =

x1
...

xn

 , b =

b1
...

bn


Theorem 4.21. Suppose Ax = b where A is invertible. Then the unique solution x has kth entry

xk =
1

det A
det Mk

where Mk is the matrix obtained by replacing column k of A by b.

Proof. For each k, define Xk = A−1Mk. Since the columns of A and Mk, except the kth, are identical

Xkei = A−1Mkei =

{
A−1b = x if i = k
A−1Aei = ei if i ̸= k

Therefore Xk is the identity matrix except that the kth column is the solution x. Use the kth row
cofactor expansion of Xk to see that

xk = (−1)k+kxk det In−1 = det Xk = det A−1 det Mk

Cramer’s rule is particularly useful if you only want to find a small number of the solution values
x1, . . . , xn. If you want to find all the values, you are usually better off solving the system using an
augmented matrix approach, or even computing the inverse A−1.

Example 4.22. We find y by applying Cramer’s rule to the system


2x + 3y + 7z = 1
x − y + 3z = 2
3x + 5y + z = 8

y =

∣∣∣ 2 1 7
1 2 3
3 8 1

∣∣∣∣∣∣ 2 3 7
1 −1 3
3 5 1

∣∣∣ =
2
∣∣∣∣2 3
8 1

∣∣∣∣− ∣∣∣∣1 3
3 1

∣∣∣∣+ 7
∣∣∣∣1 2
3 8

∣∣∣∣
2
∣∣∣∣−1 3

5 1

∣∣∣∣− 3
∣∣∣∣1 3
3 1

∣∣∣∣+ 7
∣∣∣∣1 −1
3 5

∣∣∣∣ =
−44 + 8 + 14
−32 + 24 + 56

=
−22
48

= −11
24

If you want to find x and z using this method, you need to do a lot of calculating!
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Exercises 4.2 1. Compute the determinants of the following matrices using any method you like:

A =

 −1 2 + i 3
1 − i i 1

3i 2 −1 + i

 B =


1 −2 3 −12
−5 12 −14 19
−9 22 −20 31
−4 9 −14 15


2. Prove that the determinant of an upper triangular matrix is the product of the terms on its

diagonal.

3. We saw that a general 4× 4 determinant requires the computation of 4 · 3 = 12 determinants of
order 2. How many order 2 determinants does an order n determinant require?

4. Establish the ‘diagonal’ method for computing a 3 × 3 determinant: as the sum of the products
of the falling diagonals minus the products of the rising diagonals:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33


det A = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a31a22

Now use this to quickly compute the determinant of A =
( 1 3 0

2 −1 1
1 0 2

)
.

(Warning! This method is special to order 3 determinants: if n ≥ 4 you have to calculate the slow way!)

5. (a) Prove part 4 of Theorem 4.12: a matrix with two identical rows has determinant zero.

(b) Prove the type I case of Corollary 4.14: switching two rows changes the sign of the deter-
minant.

(Hint: You can prove these in either order. You’ll need an induction for whichever you do first, then the
other should follow quite easily. . . )

6. Find the determinant of A =


1 4 1 1
2 3 0 1
2 2 0 1
2 1 −1 1



7. Use Cramer’s rule to solve the system of equations


2x + y − 3z = 1
x − 2y + z = 0
3x + 4y − 2z = −5

8. Suppose that n is odd and that A is skew-symmetric (AT = −A). Prove that A is singular. Can
we say anything if n is even?

9. Suppose β = {v1, . . . , vn} ⊆ Fn. Prove that β is a basis if and only if det(v1 · · · vn) ̸= 0.

10. Let dim V = n, let T ∈ L(V) and suppose β is a basis of V. Define det T := det[T]β. Explain
why this definition is independent of the choice of basis β.
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11. (a) Suppose X, Y ∈ Mn(F) can be written in block form

X =

(
A B
O I

)
Y =

(
I C
O D

)
where O is a zero matrix and I an identity. Prove that det X = det A and det Y = det D.

(b) Use part (a) to prove that det
(

A B
O C

)
= det A det C

12. Consider the system of equations{
2x + 3y = 1
x + 4y = 2

⇐⇒
(

2 3
1 4

)
x =

(
1
2

)
(a) Compute the inverse of the square matrix and, supposing x, y ∈ R, find the solution.

(b) Suppose the above are now equations in the field Z7 of remainders modulo 7:{
2x + 3y ≡ 1 (mod 7)
x + 4y ≡ 2 (mod 7)

Compute the inverse of the matrix in Z7 and use it to find x, y.

(c) What happens if you try to solve the system in Z5? Instead find the solutions to the system{
2x + 3y ≡ 4 (mod 5)
x + 4y ≡ 2 (mod 5)

13. (a) Use Cramer’s rule to prove the classical adjoint formula for the inverse:

(A−1)ij =
(−1)i+j

det A
det Ãji

Moreover, conclude that
n
∑

j=1
(−1)i+jaij

∣∣Ãkj
∣∣ = {det A if i = k

0 otherwise

(b) Use part (a) to compute the inverse of A =
( 1 3 1

2 1 −1
1 1 2

)
(c) Suppose that A ∈ Mn(Z) is an invertible square matrix, all of whose entries are integers.

Prove that the entries of A−1 are all integers if and only if det A = ±1.

70



4.3 A Characterization of Determinant: non-examinable

In Exercise 4.1.5 we can give an alternative interpretation of the determinant. This construction can
be done in general, though it involves a more advanced type of vector space.

Definition 4.23. Let V be a vector space over F and let f : V × · · · × V → F be a function from k
copies of V to the field. We say that f is k-multilinear if it is linear in each entry: for each j,

f (v1, . . . , vj−1, x + λy, vj+1, . . . , vk) = f (v1, . . . , vj−1, x, vj+1, . . . , vk)

+ λ f (v1, . . . , vj−1, y, vj+1, . . . , vk)

An alternating k-form on V is a k-multilinear function f which evaluates to zero whenever two entries
in the domain are equal:

f (. . . , v, . . . , v, . . .) = 0

Since the codomain of an alternating k-form is the (one-dimensional) vector space F, the set of all
alternating k-forms is a vector space over F in its own right, denoted

∧k V∗ .

This may seem very abstract, but you’ve already seen an example: the determinant! Viewed as a
function

det : Fn × · · · × Fn → F

Theorem 4.12 (part 1) and Corollary 4.14 say that det ∈ ∧n(Fn)∗ is an alternating n-form. We now
observe something very special about this vector space.

Theorem 4.24. If dim V = n, then dim
∧n V∗ = 1.

Proof. Let f ∈ ∧n V∗. Since f multilinear, it is determined completely by its values when applied to
a basis β = {v1, . . . , vn} of V. In particular, it is determined by the nn scalars

f (w1, . . . , wn) where each wi ∈ β (∗)

Since f is alternating, this is non-zero only if {w1, . . . , wn} = β is the whole basis. Moreover, for any
x, y ∈ V

0 = f (. . . , x + y, . . . , x + y, . . .)
= f (. . . , x, . . . , x, . . .) + f (. . . , x, . . . , y, . . .) + f (. . . , y, . . . , x, . . .) + f (. . . , y, . . . , y, . . .)
= f (. . . , x, . . . , y, . . .) + f (. . . , y, . . . , x, . . .) (since f is alternating)

=⇒ f (. . . , y, . . . , x, . . .) = − f (. . . , x, . . . , y, . . .)

Applying the ‘entry swapping’ to the values (∗), we see that we may rearrange the order of the basis
vectors v1, . . . , vn so that they are in exactly the same order as they appear in β, at the cost of a ±-sign.
Otherwise said, f is completely determined by the single value f (v1, . . . , vn).
A specific alternating n-form f may be defined by choosing f (v1, . . . , vn) = 1. If g ∈ ∧n V∗ is another
alternating n-form, then

g = a f where a = g(v1, . . . , vn)

All alternating n-forms are a scalar multiple of f , and so dim
∧n V∗ = 1.
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This immediately leads to an alternative non-inductive definition of determinant.

Definition 4.25. The order n determinant is the unique alternating n-form det ∈ ∧n(Fn)∗ for which
det(e1 · · · en) = 1.

This is very sneaky. Rather than defining determinant inductively in terms of smaller determinants,
we demand only that it satisfy certain properties. The problem with this definition is that it is very
difficult to compute with explicitly, so it is good that we have the more elementary discussion to rely
on. The alternative formulation is much more useful in the abstract.
The exterior algebra of alternating forms is widely applied in modern Geometry and Physics with a
purpose analogous to how determinants measure (hyper-)volume.

Exercises 4.3 1. Let V be a vector space over F with dual space V∗ = L(V, F). For any f , g ∈ V∗,
define the wedge product f ∧ g by

∀v, w ∈ V, f ∧ g(v, w) := det
(

f (v) f (w)
g(v) g(w)

)
Prove that f ∧ g ∈ ∧2 V∗.

2. Let { f1, f2, f3} be the dual basis to {e1, e2, e3} in R3 (that is fi(ej) = δij). Prove that the cross-
product of vectors v, w ∈ R3 is given by

v × w =

 f2 ∧ f3(v, w)
f3 ∧ f1(v, w)
f1 ∧ f2(v, w)


A similar approach can be used to construct an analogue of the cross product of three vectors in R4:
if you want a challenge, try to figure out how to create a vector orthogonal to u, v, w ∈ R4 using
three-forms.

3. If k ≤ n = dim V, prove that dim
∧k V∗ = (n

k) =
n!

k!(n−k)! is the binomial coefficient, namely the
number of size-k subsets of a size n set.
(Hint: given a basis β of V, what values are needed to defined f ?)
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5 Diagonalization

5.1 Eigenvalues and Eigenvectors

Suppose V has a finite basis β = {v1, . . . , vn}. We’ve seen that a linear map T ∈ L(V) corresponds to
multiplication by a matrix [T]β ∈ Mn(F):

[T]β[v]β = [T(v)]β

The most desirable situation is when this matrix is diagonal: otherwise said, ∃λi ∈ F such that

[T]β =

λ1 0
. . .

0 λn

 corresponding to ∀i, T(vi) = λivi

Each vector vi is transformed by T in a simple way: without meaningfully changing its direction.

Definition 5.1. Suppose V is a vector space over F and that T ∈ L(V).

1. A non-zero vector v ∈ V is an eigenvectora of T with eigenvalue λ ∈ F if T(v) = λv.

2. The eigenvalues/vectors of A ∈ Mn(F) are those of LA ∈ L(Fn): the equation is Av = λv.

3. If V is finite-dimensional, we say that T is diagonalizable if there exists a basis β of eigenvectors:
otherwise said, [T]β is diagonal. We call β an eigenbasis.

aIn German, eigen indicates ownership: the term was coined by David Hilbert to indicate how eigenvalues and eigen-
vectors belong to a linear map. Earlier mathematicians used the word characteristic in a similar context.

Example 5.2. If β = {v1, v2} is an eigenbasis for A =
(

2 1
3 4

)
, then for vj = ( x

y ) and λj = λ, we have{
2x + y = λx
3x + 4y = λy

⇐⇒
{

y = (λ − 2)x
3x = (λ − 4)y

⇐⇒
{

y = (λ − 2)x
3x = (λ − 4)(λ − 2)x

⇐⇒ (λ − 4)(λ − 2) = 3 (∗)

since x = y = 0 does not produce a basis vector. The polynomial has solutions λ1 = 5, λ2 = 1 which,
upon substitution into the original equations, result in the eigenvectorsa

v1 =

(
1
3

)
, v2 =

(−1
1

)
Plainly LA is diagonalizable since [LA]β =

(
5 0
0 1

)
is diagonal, and we conclude that {v1, v2} really is

an eigenbasis. Moreover, if ϵ = {i, j} is the standard basis, then

A = [LA]ϵ = Qϵ
β[LA]βQβ

ϵ =

(
1 −1
3 1

)(
5 0
0 1

)(
1 −1
3 1

)−1

where Qϵ
β is the change of co-ordinate matrix: thus A = QDQ−1 where D is diagonal.

aThere is some freedom here: any non-zero scalar multiples of v1, v2 are also eigenvectors; [LA]β is unchanged.
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Warnings! The definition and example should remind you of the following critical facts:

• 0 is never an eigenvector! It is completely uninteresting to observe that v = 0 solves every
equation of the form T(v) = λv.

• If v is an eigenvector of T with eigenvalue λ, then so is any non-zero scalar multiple:

T(kv) = kT(v) = kλv = λ(kv)

Indeed in Example 5.2, the (infinitely many) eigenvectors of A have the form

av1 =

(
a

3a

)
, bv2 =

(−b
b

)
where a, b ̸= 0

What we really care about are linearly independent eigenvectors, of which A has only two: v1, v2.
While strictly nonsense, it is common and acceptable to state that “A has two eigenvectors,”
rather than the more precise “A has two linearly independent eigenvectors.”

Is every linear map diagonalizable? Does every linear map have eigenvectors?

These are the most obvious questions arising from the definition: the answers to both are a resound-
ing no! To illustrate, here are several examples where we obtain many eigenvectors or very few.

Examples 5.3. 1. Let A =
(

1 4
0 1

)
. If v = ( x

y ) is an eigenvector with eigenvector λ, then{
x + 4y = λx
y = λy

=⇒ xy + 4y2 = λxy = xy =⇒ y = 0 =⇒ λ = 1

A is non-diagonalizable: it has one independent eigenvector v =
(

1
0

)
with eigenvalue λ = 1.

2. The matrix A =
(

0 −1
1 0

)
∈ M2(R) acts by rotation counter-clockwise by 90° in R2. Since Av is

perpendicular to v, we see that A has no eigenvectors! In particular, A is not diagonalizable.

However, see Example 5.7.3 for what happens when A is viewed as a complex matrix.

3. Let T = d
dx be defined by differentiation on some vector space of functions V.

A non-zero function f ∈ V is an eigenvector (eigenfunction) of T with eigenvalue λ if and only
if it satisfies the natural growth equation f ′ = λ f . As seen in calculus/ODEs, all solutions have
the form f (x) = ceλx where c is constant. Here are three specific cases:

(a) If V is the space of all differentiable functions, then T has infinitely many linearly indepen-
denta eigenvectors f (x) = eλx. In this context diagonalizability is meaningless since V is
infinite-dimensional.

(b) If V = P(R) is the space of polynomials, then T has exactly one independent eigenvector
f (x) = 1 with eigenvalue λ = 0.

(c) Let β = {sin x, cos x} and V = SpanR{sin x, cos x}, then [T]β =
(

0 −1
1 0

)
is the matrix above,

and so T has no eigenvectors.
(d) If β = {ex, e2x, e5x} and V = SpanR β, then T is diagonalizable; indeed β is an eigenbasis.

aThat these functions are linearly independent is a little tricky and was discussed in the first chapter.
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Finding Eigenvalues and Eigenvectors in Finite-Dimensions

As Example 5.3.3 shows, linear operators on infinite-dimensional vector spaces can have eigenvec-
tors, though the computation of such is usually case-specific. In the finite-dimensional situation, we
can approach matters systematically. First we observe that we need only consider matrices.

Lemma 5.4. Let T ∈ L(V) where dim V = n and suppose β is a basis of V. Then

T(v) = λv ⇐⇒ [T]β[v]β = λ[v]β

Otherwise said:

• T has the same eigenvalues as any matrix of T with respect to any basis.

• The co-ordinate isomorphism ϕβ : V → Fn : v 7→ [v]β maps eigenvectors of T to those of [T]β.

The lemma says that to compute the eigenvalues and eigenvectors of T, we simply compute those of
its matrix [T]β with respect to any basis β and then translate.

With this identification out of the way, let A ∈ Mn(F) have eigenvector v with eigenvalue λ. Observe:

Av = λv ⇐⇒ (A − λI)v = 0 (†)

where I is the identity matrix. Since v ̸= 0, the nullspace N (A − λI) is non-trivial. Indeed

λ is an eigenvalue of A ⇐⇒ null(A − λI) > 0 ⇐⇒ rank(A − λI) < n
⇐⇒ det(A − λI) = 0

where we used the Rank–Nullity Theorem and a standard property of the determinant.

Definition 5.5. The characteristic polynomial of a matrix A is p(t) := det(A − tI).
When dim V = n, the characteristic polynomial of T ∈ L(V) may be computed with respect to any
basis β of V

p(t) = det(T − tI) := det[T − tI]β = det([T]β − tIn)

In either case, the characteristic equation is p(t) = 0.

Plainly λ is an eigenvalue if and only if p(λ) = 0. Once we have an eigenvalue, (†) says that the
corresponding eigenvectors lie in the nullspace N (A − λI). To summarize:

Theorem 5.6. Let A ∈ Mn(F).

1. The characteristic polynomial p(t) is a degree n polynomial in t with leading term (−1)ntn.

2. A has at most n eigenvalues, precisely the solutions to the characteristic equation p(t) = 0.

3. An eigenvector with eigenvalue λ is any non-zero element of the eigenspace Eλ := N (A − λI).

Once part 1 is proved, the rest follows immediately from our above discussion and the fact that a
degree n polynomial has at most n solutions. Before seeing this, we revisit our past examples in this
language and see another.
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Examples 5.7. 1. (Example 5.2) A =
(

2 1
3 4

)
has characteristic polynomial

p(t) = det
(

2 − t 1
3 4 − t

)
= (2 − t)(4 − t)− 3 = t2 − 6t + 5 = (t − 5)(t − 1)

recovering the eigenvalues λ1 = 5 and λ2 = 1. We can now find the nullspaces:

• λ1 = 5: N (A − λ1 I) = N
(−3 1

3 −1

)
= Span

(
1
3

)
• λ2 = 1: N (A − λ2 I) = N

(
1 1
3 3

)
= Span

(−1
1

)
We may therefore choose two independent eigenvectors v1 =

(
1
3

)
, v2 =

( −1
1

)
: these form an

eigenbasis {v1, v2}.

2. (Example 5.3.2) A =
(

0 −1
1 0

)
has characteristic equation p(t) = det

( −t −1
1 −t

)
= t2 + 1 = 0.

Since this has no solutions (in R), we see that A has no eigenvalues. However, if we consider
A ∈ M2(C) as a complex matrix, then there are two eigenvalues λ1 = i and λ2 = −i: indeed

N (A − λ1 I) =
(−i −1

1 −i

)
= Span

(
i
1

)
and N (A − λ2 I) = Span

(−i
1

)
so we may choose two independent eigenvectors v1, v2 ∈ C2. These form a basis and so A is
diagonalizable as a complex matrix.

3. Let T ∈ L(P2(R)) be defined by

T( f )(x) =
∫ 2

0
f (x)dx + (x − 3) f ′(x)

With respect to the standard basis, we have the matrix A = [T]ϵ =
(

2 −1 8
3

0 1 −6
0 0 2

)
whose eigenval-

ues are the solutions of the characteristic equation

0 = p(t) = det(A − tI) = (2 − t)2(1 − t) ⇐⇒ t = 1, 2

Now compute the nullspaces:

• λ1 = 1: N (A − λ1 I) = N
1 −1 8

3
0 0 −6
0 0 1

 = Span

1
1
0


• λ2 = 2: N (A − λ2 I) = N

0 −1 8
3

0 −1 −6
0 0 0

 = Span

1
0
0


We may therefore choose two independent eigenvectors of A; v1 =

(
1
1
0

)
and v2 =

(
1
0
0

)
. These

correspond to polynomials f1, f2 ∈ P2(R) or eigenfunctions of T:

v1 = [ f1]ϵ =⇒ f1(x) = 1 + x
v2 = [ f2]ϵ =⇒ f2(x) = 1

It is easily checked directly that T( f1) = f1 and T( f2) = 2 f2. Since T has insufficient indepen-
dent eigenvectors, we see that it is not diagonalizable.
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We now give an induction argument to complete the proof of Theorem 5.6: that p(t) is a degree n
polynomial. First observe the following obvious fact: in any cofactor expansion of the determinant,
one never multiplies an entry of a matrix by itself. . .

Lemma 5.8. If B(t) is a square matrix, k of whose entries are linear functions of t with the rest
constant, then det B(t) is a polynomial in t with degree ≤ k.

The main argument is a little difficult to follow, so first consider an example where we expand the
characteristic polynomial of a 3 × 3 matrix along the first row.

B =

 1 3 2
−1 0 4
1 −2 5

 =⇒ p(t) =

∣∣∣∣∣∣
1 − t 3 2
−1 −t 4
1 −2 5 − t

∣∣∣∣∣∣
= (1 − t)

∣∣∣∣−t 4
−2 5 − t

∣∣∣∣− 3
∣∣∣∣−1 4

1 5 − t

∣∣∣∣+ 2
∣∣∣∣−1 −t

1 −2

∣∣∣∣
= (b11 − t)det B̃11(t)− b12 det B̃12(t) + b13 det B̃13(t)

In each case B̃1j(t) is the 1jth minor of the matrix B − tI. Observe that

deg(det B̃1j(t)) =

{
2 if j = 1
1 otherwise

=⇒ deg(p(t)) = 3

This is essentially the induction step in the following proof with n = 2.

Proof of Theorem 5.6, part 1. Since only n entries of the matrix A − tI contain t, the Lemma tells us that
the maximum degree of p(t) = det(A − tI) is n.

It remains to prove that the leading term of p(t) is (−1)ntn: we prove by induction on n.
(Base Case) If n = 1, then A = (a) and so p(t) = −t + a as required.

(Induction Step) Fix n ∈ N and assume for every matrix A ∈ Mn(F) that

p(t) = (−1)ntn + · · ·

Let B ∈ Mn+1(F) and compute using the cofactor expansion along the first row:

det(B − tI) = (b11 − t)det B̃11(t)− b12 det B̃12(t) + · · ·

where B̃1j(t) is the n × n minor obtained by deleting the 1st row and jth column of B − tI. There are
two cases:

If j = 1: B̃11(t) = B11 − tI ∈ Mn(F). By the induction hypothesis its determinant is a degree n
polynomial with leading term (−1)ntn. It follows that

(b11 − t)det B̃11(t) = (−1)n+1tn+1 + lower order terms

If j ≥ 2: B̃1j(t) ∈ Mn(F) where n − 1 of the entries contain a t: we have deleted the first row and
jth column and thus removed two of the diagonal t-terms from B − tI. By the Lemma, det B̃1j(t)
is a polynomial of degree at most n − 1.

Summing these polynomials completes the proof.
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Exercises 5.1 1. For each matrix A ∈ Mn(F), find the eigenvalues and a set of linearly independent
eigenvectors. If an eigenbasis exists, state an invertible matrix Q and a diagonal matrix D such
that A = QDQ−1.

(a) A =
(

1 2
3 2

)
∈ M2(R) (b) A =

( 0 −2 −3
−1 1 −1
2 2 5

)
∈ M3(R)

(c) A =
( i 1

2 −i
)
∈ M2(C) (d) A =

(
2 0 −1
4 1 −4
2 0 −1

)
∈ M3(R)

2. For each linear operator T on a vector space V, find an ordered basis β such that [T]β is diagonal.

(a) V = P2(R) and T
(

f (x)
)
= x f ′(x) + f (2)x + f (3)

(b) V = P3(R) and T
(

f (x)
)
= x f ′(x) + f ′′(x)− f (2)

3. If A and B are similar matrices (B = QAQ−1 for some Q), prove that v is an eigenvector of A if
and only if Qv is an eigenvector of B with the same eigenvalue.

4. Prove that the characteristic polynomial p(t) = det(T − tI) = det([T]β − tI) of a linear map
T ∈ L(V) is independent of the choice of basis β used in its computation.

5. Suppose A ∈ Mn(C) is a real matrix with eigenvalue λ ∈ C and eigenvector v ∈ Cn.

(a) Prove that the complex conjugate v is also an eigenvector. What is its eigenvalue?

(b) Prove that if v = aw for some (complex) scalar a and real vector w ∈ Rn, then λ ∈ R.

(c) Is the converse of part (b) true? Explain. In particular, if λ ∈ R, consider the real and
imaginary parts of v

x :=
1
2
(v + v) y :=

1
2i
(v − v)

and prove that dimR Span{x, y} = dimC Span{v, v}. What does this mean for the eigen-
vectors of A?

6. Let p(t) = (−1)ntn + cn−1tn−1 · · ·+ c0 be the characteristic polynomial of a matrix A.

(a) Prove that c0 = det A and hence conclude that A is invertible if and only if c0 ̸= 0.

(b) Prove that p(t) = (a11 − t)(a22 − t) · · · (ann − t) + q(t) where deg q(t) ≤ n − 2. Hence
argue that cn−1 = (−1)n−1 tr A.
(Hint: try an induction proof )
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5.2 Diagonalizability

We have now seen how to compute eigenvectors in finite dimensions, and observed that diagonal-
izability is equivalent to the existence of an eigenbasis. In this section we consider the question of
when an eigenbasis might exist.

Theorem 5.9. Suppose v1, . . . , vk are eigenvectors of T ∈ L(V) corresponding to distinct eigenval-
ues λ1, . . . , λk. Then the set {v1, . . . , vk} is linearly independent.

Proof. We prove by induction on k. The base case k = 1 is trivial.
Fix k ∈ N: for the induction hypothesis, suppose every set of k eigenvectors corresponding to k
distinct eigenvalues is linearly independent. To obtain a contradiction, suppose {v1, . . . , vk, vk+1}
is a linearly dependent set of k + 1 eigenvectors corresponding to distinct eigenvalues λ1, . . . , λk+1.
WLOG, we may assume

∃a1, . . . , ak ∈ F such that a1v1 + · · ·+ akvk + vk+1 = 0 (∗)

Apply T to this linear dependence and substitute for vk+1 using (∗):
k

∑
j=1

ajλjvj + λk+1vk+1 = 0 =⇒
k

∑
j=1

aj(λj − λk+1)vj = 0

=⇒ aj(λj − λk+1) = 0 =⇒ aj = 0

where we used the linear independence of {v1, . . . , vk} and the distinctness of the λ1, . . . , λk+1. But
this shows that vk+1 = 0 is not an eignevector: contradiction. We conclude that {v1, . . . , vk+1} is
linearly independent.
By induction, the result is proved.

Suppose dim V = n and that the degree n characteristic polynomial of T ∈ L(V) has distinct roots;5

p(t) = (−1)n(t − λ1) · · · (t − λn) = (λ1 − t) · · · (λn − t)

where λ1, . . . , λn are the distinct eigenvalues of T. Since each λj implies the existence of at least one
eigenvector vj, the Theorem says that {v1, . . . , vn} is linearly independent and thus a basis of V (an
eigenbasis for T). We therefore have a simple sufficient condition for the diagonalizability of T.

Corollary 5.10. Suppose dimF V = n and T ∈ L(V). If T has n distinct eigenvalues (equivalently
p(t) has n distinct roots in the field F), then T is diagonalizable.

To orient ourselves, recall Examples 5.7.

1. A =
(

2 1
3 4

)
∈ M2(R) has distinct eigenvalues λ = 1, 5 ∈ R and is diagonalizable.

2. A =
(

0 −1
1 0

)
∈ M2(C) has distinct eigenvalues λ = ±i ∈ C and is diagonalizable.

3. T ∈ L(P2(R)) defined by T( f )(x) =
∫ 2

0 f (x)dx + (x − 3) f ′(x) has only two distinct eigenval-
ues λ = 1, 2 and is non-diagonalizable.

5From algebra, every degree n polynomial has at most n distinct roots.
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After reviewing the examples, it might feel as if the Corollary should be biconditional. However, a
trivial example says not: the identity map IV ∈ T(V) has only one eigenvalue λ = 1 but is plainly
diagonalizable (by any basis!). We now develop a necessary condition for diagonalizability.

Definition 5.11. A degree n polynomial p(t) splits over a field F if it factorizes completely over F.
Otherwise said, ∃c, α1, . . . , αn ∈ F such that

p(t) = c(t − α1) · · · (t − αn)

The values α1, . . . , αn are the roots or zeros of the polynomial.

Example 5.12. p(t) = t2 + 4 = (t − 2i)(t + 2i) does not split over R, but does split over C.

Theorem 5.13. If T is diagonalizable, then its characteristic polynomial splits.

Proof. Let β = {v1, . . . , vn} be an eigenbasis, then [T]β is diagonal with the eigenvalues down the
diagonal. But then the characteristic polynomial of T splits:

p(t) = det([T]β − tI) = (λ1 − t) · · · (λn − t)

Putting Corollary 5.10 and Theorem 5.13 together, we have

p(t) has distinct roots =⇒ T diagonalizable =⇒ p(t) splits

Our ‘identity’ observation above shows that these conditions are not equivalent. Here is another
example of repeated eigenvalues.

Examples 5.14. The polynomial p(t) = (6 − t)(4 − t)2 splits but does not have three distinct roots.
This is not an idle example, for p is the characteristic polynomial of many linear maps, some diago-
nalizable, some not. For instance:

1. A =
( 6 0 0

0 4 0
0 0 4

)
is diagonalizable (it’s already diagonal!) with eigenbasis {i, j, k}.

2. B =
( 6 0 0

0 4 1
0 0 4

)
is non-diagonalizable. To verify this, observe that

N (B − 6I) = N
0 0 0

0 −2 1
0 0 −2

 = Span

1
0
0


N (B − 4I) = N

2 0 0
0 0 1
0 0 0

 = Span

0
1
0


We can therefore find only two independent eigenvectors v1 = i and v2 = j.

To obtain a fuller description of diagonalizability, we need to come to terms with the discrepancy
above: p(t) has root (λ = 4) with multiplicity two, but we can only find one independent eigenvector
(v2 = j) with this eigenvalue Bv2 = 4v2.
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Definition 5.15. Suppose V is finite-dimensional and that T ∈ L(V) has an eigenvalue λ.

1. The geometric multiplicity of λ is the dimension dim Eλ of its eigenspacea

Eλ := N (T − λI)

2. The algebraic multiplicity mult(λ) of λ is the highest power m for which (t − λ)m is a factor of
the characteristic polynomial p(t). Otherwise said, there exists a polynomial q(t) such that

p(t) = (t − λ)mq(t) and q(λ) ̸= 0

av is an eigenvector with eigenvalue λ if and only if v ∈ Eλ is non-zero.

Example (5.14, mark II). Here are the eigenspaces and multiplicities for B: note how the algebraic
and geometric multiplicities differ.

eigenvalue λ 6 4
algebraic multiplicity mult(λ) 1 2

eigenspace Eλ Span i Span j
geometric multiplicity dim Eλ 1 1

We can now state the main result.

Theorem 5.16. Suppose dim V = n and that T ∈ L(V) has distinct eigenvalues λ1, . . . , λk.

1. For each eigenvalue λi, we have dim Eλi ≤ mult(λi).

2. The following are equivalent:

(a) T is diagonalizable.

(b) The characteristic polynomial of T splits and dim Eλi = mult(λi) for each i;

p(t) = (λ1 − t)dim Eλ1 · · · (λk − t)dim Eλk

(c) ∑k
i=1 dim Eλi = n.

(d) V = Eλ1 ⊕ · · · ⊕ Eλk .

We’ll prove this shortly, but first, here are two examples where the calculations have been omitted.

Examples 5.17. 1. A =

( 2 0 0 0
0 3 1 0
0 0 3 1
0 0 0 3

)
is non-diagonalizable: p(t) = (2 − t)(3 − t)3 splits, but,

λ 2 3
mult(λ) 1 3

Eλ Span e1 Span e2

dim Eλ 1 1

dim E3 ̸= mult(3), and
2

∑
i=1

dim Eλi = 2 < 4
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2. Let B =

( −1 6 0 0
−2 6 0 0
0 0 3 0
0 0 0 3

)
is diagonalizable. Indeed p(t) = (2 − t)(3 − t)3 splits, and we have

λ 2 3
mult(λ) 1 3

Eλ Span(2e1 + e2) Span{3e1 + 2e2, e3, e4}
dim Eλ 1 3

and R4 = E2 ⊕ E3

From the table, we can read off an eigenbasis with respect to which the map is diagonal

β =




2
1
0
0

 ,


3
2
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 =⇒ [LB]β =


2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3



Proof. 1. Let r = dim Eλ and extend a basis βλ of Eλ to a basis β = βλ ∪ γ of V.

Since T(v) = λv for all v ∈ Eλ, we see that the matrix of T has block form [T]β =

(
λIr A
O B

)
for some matrices A, B, from which the characteristic polynomial of T is

p(t) = det
(

(λ − t)Ir A
O B − tIn−r

)
= (λ − t)r det(B − tIn−r)

It follows that (λ − t)dim Eλ divides p(t), and so dim Eλ ≤ mult(λ).

2. We give a brief summary:

(a) =⇒ (b) If T is diagonalizable, then p(t) splits by Theorem 5.13, whence ∑ mult(λi) = n.
The cardinality n of an eigenbasis is at most ∑ dim Eλi . Combined with part 1, we have
equality of multiplicities:

n ≤ ∑ dim Eλi ≤ ∑ mult(λi) = n =⇒ dim Eλi = mult(λi)

(b) =⇒ (c) p(t) splits =⇒ n = ∑ mult(λi) = ∑ dim Eλi

(c) =⇒ (d) This requires an induction on the number of distinct eigenvalues.
For the induction step, fix j < k and let vj+1 be an eigenvector with eigenvalue λj+1. If
vj+1 ∈ Eλ1 ⊕ · · · ⊕ Eλj then there exist eigenvectors vi ∈ Eλi and ai ∈ F for which

vj+1 = a1v1 + · · ·+ ajvj

But this contradicts the linear independence of the set {v1, . . . , vj+1} (Theorem 5.9).

By induction, Eλ1 ⊕ · · · ⊕ Eλk exists; by assumption it has dimension n = dim V and thus
equals V.

(d) =⇒ (a) is trivial since (d) says there exists a basis of eigenvectors.
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Exercises 5.2 1. For each matrix, find its characteristic polynomial, its eigenvalues/spaces, its alge-
braic and geometric multiplicities and decide if it is diagonalizable.

(a) A =

( 4 1 0 0
0 4 0 0
0 0 4 0
0 0 0 3

)
(b) B =

( 1 0 0 0
0 −4 0 4
0 0 1 0
0 −6 0 6

)
2. Let T = d

dx be the derivative operator.

(a) If we consider T = L(P2(R)), show that T is not diagonalizable.

(b) More generally, what is the characteristic polynomial of T ∈ L(Pn(R))? Why is it clear
that T is non-diagonalizable?

3. Diagonalize A =
(

1 4
2 3

)
∈ M2(R), and thus find an expression for An for any n ∈ N.

4. Show that the characteristic polynomial of A =
(

3 −4
4 3

)
does not split over R. Diagonalize A

over C.

5. Suppose T is a linear operator on a finite dimensional vector space V and that β is a basis of V
with respect to which [T]β is diagonal. Prove that the characteristic polynomial of T splits.

6. Suppose T ∈ L(V) is invertible with eigenvalue λ. Prove that λ−1 is an eigenvalue of T−1 with
the same eigenspace. If T is diagonalizable, prove that T−1 is diagonalizable.

7. If p(t) splits, prove that det T = λ
mult(λ1)
1 · · · λ

mult(λk)
k is the product of its distinct eigenvalues

up to (algebraic) multiplicity.
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5.3 Invariant Subspaces and the Cayley–Hamilton Theorem

Eigenspaces of a linear map provide a simple example of a special type of subspace.

Definition 5.18. Suppose T ∈ L(V). A subspace W of V is T-invariant if T(W) = {T(w) : w ∈ W}
is a subspace of W. In such a case we define the restriction TW ∈ L(W) by

TW : W → W : w 7→ T(w)

Much can often be understood about a linear map by considering its invariant subspaces.
We start by extending the proof of Theorem 5.16 (part 1) to any invariant subspace.

Theorem 5.19. Suppose T ∈ L(V), that dim V is finite and that W ≤ V is T-invariant. Then the
characteristic polynomial pW(t) of TW divides that of T.

Proof. Extend a basis βW of W to a basis β = βW ∪ γ of V. Then ∃A, B such that

[T]β =

(
[TW ]βW A

O B

)
=⇒ p(t) = det([TW ]βW − tI)det(B − tI) = pW(t)det(B − tI)

Examples 5.20. 1. Every eigenspace Eλ is T-invariant: ∀w ∈ Eλ, we have, T(w) = λw ∈ Eλ.

Restricted to the eigenspace, the linear map is simply TEλ
= λI, with characteristic polynomial

pλ(t) = (λ − t)dim Eλ . This divides p(t), as seen in Theorem 5.16.

2. If A =
(

1 2 4
0 3 1
0 0 2

)
, then LA ∈ L(R3) has an invariant subspace W = Span{i, j}. It is easy to check

that, with respect to the standard basis, the restriction of LA to W has matrix
(

1 2
0 3

)
Since both

this and A are upper triangular, we quickly verify that

p(t) = (1 − t)(2 − t)(3 − t) = (2 − t)pW(t)

We now consider a more general type of invariant subspace.

Definition 5.21. Let T ∈ L(V) and v ∈ V. The T-cyclic subspace generated by v is the span

⟨v⟩ = Span{v, T(v), T2(v), . . .}

The T-cyclic subspace ⟨v⟩ is the smallest T-invariant subspace containing v (see Exercise 5.3.4).

Examples 5.22. 1. If A =
( 5 0 0

0 −4 1
0 0 −4

)
, then the eigenspaces are LA-cyclic subspaces:

E5 = Span i = ⟨i⟩ , E−4 = Span j = ⟨j⟩

There are other examples, for instance ⟨k⟩ = Span{j, k} is LA-cyclic, but is not an eigenspace.

2. dim ⟨v⟩ = 1 ⇐⇒ v is an eigenvector of T.

3. Not every T-invariant subspace is T-cyclic: for instance, if T = I is the identity, then every
subspace is T-invariant, however only the one-dimensional subspaces are T-cyclic!
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For T-cyclic subspaces, we can extend Theorem 5.19 further.

Theorem 5.23. Let V be finite dimensional, T ∈ L(V), and suppose W = ⟨w⟩ is T-invariant with
dim W = k. Then:

1. βW = {w, T(w), . . . , Tk−1(w)} is a basis of W.

2. If Tk(w) + ak−1Tk−1(w) + · · ·+ a0w = 0, then the characteristic polynomial of TW is

pW(t) = (−1)k
(

tk + ak−1tk−1 + · · ·+ a1t + a0

)
3. pW(TW) = 0.

Proof. 1. Let i be maximal such that {w, T(w), . . . , Ti−1(w)} is linearly independent. Observe:

• Plainly i exists since a maximal linearly independent set is finite (dim W < ∞).
• By the maximality of i, Ti(w) ∈ Span{w, T(w), . . . , Ti−1(w)}; by induction this extends to

j ≥ i =⇒ Tj(w) ∈ Span{w, T(w), . . . , Ti−1(w)}
It follows that W = Span{w, T(w), . . . , Ti−1(w)}.

We conclude that {w, T(w), . . . , Ti−1(w)} is a basis of W, whence i = k.

2. Expand the characteristic polynomial along the first row:

pW(t) = det([TW ]βW − tIk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−t 0 0 · · · 0 −a0
1 −t 0 0 −a1
0 1 −t 0 −a2
...

. . .
...

0 0 0 −t −ak−2
0 0 0 · · · 1 −ak−1 − t

∣∣∣∣∣∣∣∣∣∣∣∣∣

= −t

∣∣∣∣∣∣∣∣∣∣∣

−t 0 0 −a1
1 −t 0 −a2
...

. . .
...

0 0 −t −ak−2
0 0 · · · 1 −ak−1 − t

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)ka0

∣∣∣∣∣∣∣∣∣∣∣∣

1 −t 0 · · · 0
0 1 −t 0
...

. . . . . .
...

0 0
. . . −t

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
The second matrix has determinant 1, yielding the (−1)ka0 term. The first is −t multiplied by
a determinant of the same type but one dimension lower. An induction finishes things off.

3. Write S ∈ L(V) for the linear map

S := pW(T) = (−1)k(Tk + ak−1Tk−1 + · · ·+ a0I
)

Part 2 says S(w) = 0. Since S is a polynomial in T, it commutes with all powers of T:

∀i, S(Ti(w)) = Ti(S(w)) = 0

Since S is zero on the basis βW of W, we see that SW is the zero function.
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While the previous result is a little intense, the punchline of the discussion is thankfully much cleaner.

Corollary 5.24 (Cayley–Hamilton). A linear map satisfies its characteristic polynomial.

Proof. Let v ∈ V and consider the T-cyclic subspace W = ⟨v⟩ generated by v. By Theorem 5.19, the
characteristic polynomial pW(t) of the restriction TW satisfies

p(t) = qW(t)pW(t)

for some polynomial qW(t). However, Theorem 5.23 part 3 says that pW(T)(v) = 0, whence

p(T)(v) = 0

Since we may apply this reasoning to any v ∈ V, we conclude that p(T) ≡ 0 is the zero function.

The Cayley–Hamilton Theorem is used extensively to develop the idea of diagonalizability in in-
ner product spaces and in the discussion of Jordan canonical forms. We will simply apply it to the
calculation of inverses and large powers of a linear map.

Examples 5.25. 1. (Example 5.2) A =
(

2 1
3 4

)
has p(t) = t2 − 6t + 5 and we confirm:

A2 − 6A =

(
7 6
18 19

)
− 6

(
2 1
3 4

)
= −5I

It may seem like a strange thing to do for this matrix, but the characteristic equation can be
used to calculate the inverse of A:

A2 − 6A + 5I = 0 =⇒ A(A − 6I) = −5I =⇒ A−1 =
1
5
(6I − A) =

1
5

(
4 −1
−3 2

)
2. (Example 5.7.3) We use the Cayley–Hamilton Theorem to compute T4 when

A = [T]ϵ =
(

2 −1 8
3

0 1 −6
0 0 2

)
with p(t) = (2 − t)2(1 − t) = 4 − 8t + 5t2 − t3

By Cayley–Hamilton,

T4 = T ◦ T3 = T ◦ (5T2 − 8T + 4I) = 5T3 − 8T2 + 4T = 5(5T2 − 8T + 4I)− 8T2 + 4T

= 17T2 − 36T + 20I

We can easily(!) compute the matrix:

[T4]ϵ = 17A2 − 36A + 20I = 17
(

4 −3 50
3

0 1 −18
0 0 4

)
− 36

(
2 −1 8

3
0 1 −6
0 0 2

)
+ 20

( 1 0 0
0 1 0
0 0 1

)
=

(
16 −15 562

3
0 1 −90
0 0 16

)
It follows, for example, that

T4(35 − 3x2) = 35 · 16 − 3
(

562
3

− 90x + 16x2
)
= −2 + 270x − 48x2
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3. The linear map T ∈ L(P2(R)) defined by T( f (x)) = f (x) + (x − 1) f ′(x) has characteristic
polynomial

p(t) = (1 − t)(2 − t)(3 − t) = −t3 + 6t2 − 11t + 6

as is easily seen by computing the matrix of T with respect to the standard basis {1, x, x2}. By
Cayley–Hamilton, we conclude that T3 = 6T2 − 11T + 6I. You can also check this explicitly,
after first computing

T2( f )(x) = f (x) + 3(x − 1) f ′(x) + (x − 1)2 f ′′(x)

T3( f )(x) = f (x) + 7(x − 1) f ′(x) + 6(x − 1)2 f ′′(x)

We can also apply Cayley–Hamilton to find the inverse of T:

I =
1
6
(T3 − 6T2 + 11T) =⇒ T−1 =

1
6
(T2 − 6T + 11I)

=⇒ T−1( f )(x) = f (x)− 1
2
(x − 1) f ′(x) +

1
6
(x − 1)2 f ′′(x)

Warning! This is only the inverse of T viewed as a linear transformation of P2(R)! If we change
the vector space, the formula for the inverse will also change. . .

Exercises 5.3 1. Find a basis for the T-cyclic subspace ⟨v⟩ of the given linear map:

(a) T
( a

b
c
d

)
=

(
a+b
b−c
a+c
a+d

)
on R4, where v =

( 1
0
0
0

)
(b) T( f )(x) = f ′′(x) on P3(R), where v = x3

(c) T( f )(x) = f ′′(x) + f (x) on Span{1, sin x, cos x, x sin x, x cos x} where v = 1 + x sin x.

2. If A =

( 4 1 0 0
0 4 0 0
0 0 4 0
0 0 0 3

)
, find three distinct invariant subspaces W ≤ R4 such that dim W = 3.

(Hint: What is Ae2?)

3. Let T ∈ L(V) and v ∈ V. Prove that dim ⟨v⟩ = 1 ⇐⇒ v is an eigenvector of T.

4. We earlier remarked that the T-cyclic subspace ⟨v⟩ is the smallest T-invariant subspace of V
containing v. To flesh this out, prove the following explicitly:

(a) ⟨v⟩ is T-invariant.

(b) If W ≤ V is T-invariant and v ∈ W, then ⟨v⟩ ≤ W.

5. Consider the linear map LA : R3 → R3 where A =
( 3 0 0

0 2 4
0 0 2

)
(a) Find the LA-cyclic subspace generated by each v ∈ R3. In particular, prove that ⟨v⟩ =

R3 ⇐⇒ ac ̸= 0.
(Hint: first compute det(v Av A2v) for any v = ai + bj + ck)

(b) Check that the Cayley–Hamilton Theorem is satisfied for LA.
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6. Let T( f )(x) = f ′(x) + 1
x

∫ x
0 f (t)dt be a linear map T ∈ L(P2(R)).

(a) Find the characteristic polynomial of T and identify its eigenspaces. Is it diagonalizable?

(b) Find a, b, c ∈ R such that T3 = aT2 + bT + cI.

(c) What are dimL(P2(R)) and dim Span{Tk : k ∈ N0}? Explain.

7. Recall Exercise 5.25.3. Find an explicit expression for T−1( f )(x) (i.e. using derivatives!) when
T is viewed as a linear transformation of P1(R).

8. For any matrix A ∈ Mn(F), prove that

dim Span{I, A, A2, . . .} ≤ n

9. Suppose A ∈ Mn(F) has characteristic polynomial

p(t) = (−1)ntn + cn−1tn−1 + · · ·+ c0

(a) Prove that if A is invertible, then

A−1 = − 1
c0

(
(−1)n An−1 + cn−1An−2 + · · ·+ c1 I

)
(b) Use this to find the inverse of T in Exercise 6.

(c) If A is upper-triangular and invertible, prove that A−1 is also upper-triangular.
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