Math 121B - Linear Algebra

Neil Donaldson

Fall 2022

Linear Algebra, Stephen Friedberg, Arnold Insel \& Lawrence Spence, 4th Ed 2003, Prentice Hall.

Review from 121A

We begin by recalling a few basic notions and notations.
Vector Spaces Bold-face \mathbf{v} denotes a vector in a vector space V over a field \mathbb{F}. A vector space is closed under vector addition and scalar multiplication

$$
\forall \mathbf{v}_{1}, \mathbf{v}_{2} \in V, \forall \lambda_{1}, \lambda_{2} \in \mathbb{F}, \quad \lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2} \in V
$$

Examples. Here are four (families of) vector spaces over the field \mathbb{R}.

- $\mathbb{R}^{2}=\{x \mathbf{i}+y \mathbf{j}: x, y \in \mathbb{R}\}=\left\{\binom{x}{y}: x, y \in \mathbb{R}\right\}$ is a vector space over the field \mathbb{R}.
- $P_{n}(\mathbb{R})$; polynomials with degree $\leq n$ and coefficients in \mathbb{R}
- $P(\mathbb{R})$; polynomials over \mathbb{R} with any degree.
- $C(\mathbb{R})$; continuous functions from \mathbb{R} to \mathbb{R}.

Linear Combinations and Spans Let $\beta \subseteq V$ be a subset of a vector space V over \mathbb{F}. A linear combination of vectors in β is any finite sum

$$
\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{n} \mathbf{v}_{n}
$$

where $\lambda_{j} \in \mathbb{F}$ and $\mathbf{v}_{j} \in \beta$. The span of β comprises all linear combinations: this is a subspace of V.
Bases and Co-ordinates A set $\beta \subseteq V$ is a basis of V if it has two properties:
Linear Independence Any linear combination yielding the zero vector is trivial; for distinct $\mathbf{v}_{j} \in \beta$,

$$
\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{n} \mathbf{v}_{n}=\mathbf{0} \Longrightarrow \forall j, \lambda_{j}=0
$$

Spanning Set $V=$ Span β; every vector in V is a (finite!) linear combination of elements of β.
Theorem. $\quad \beta$ is a basis of $V \Longleftrightarrow$ every $\mathbf{v} \in V$ is a unique linear combination of elements of β. The cardinality of all basis sets is identical; this is the dimension $\operatorname{dim}_{\mathbb{F}} V$.

Example. $\quad P_{2}(\mathbb{R})$ has standard basis $\beta=\left\{1, x, x^{2}\right\}$: every degree ≤ 2 polynomial is a unique as a linear combination $p(x)=a+b x+c x^{2}$ and so $\operatorname{dim} P_{2}(\mathbb{R})=3$. The real numbers a, b, c are the co-ordinates of p with respect to β; the co-ordinate vector of p is written

$$
[p]_{\beta}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Linearity and Linear Maps A function $\mathrm{T}: V \rightarrow W$ between vector spaces V, W over the same field \mathbb{F} is (\mathbb{F}-)linear if it respects the linearity properties of V, W

$$
\forall \mathbf{v}_{1}, \mathbf{v}_{2} \in V, \forall \lambda_{1}, \lambda_{2} \in \mathbb{F}, \quad \mathrm{~T}\left(\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{1} \mathrm{~T}\left(\mathbf{v}_{1}\right)+\lambda_{2} \mathrm{~T}\left(\mathbf{v}_{2}\right)
$$

We write $\mathcal{L}(V, W)$ for the set (indeed vector space!) of linear maps from V to W : this is shortened to $\mathcal{L}(V)$ if $V=W$. An isomorphism is an invertible/bijective linear map.

Theorem. If $\operatorname{dim}_{\mathbb{F}} V=n$ and β is a basis of V, then the co-ordinate map $\mathbf{v} \mapsto[\mathbf{v}]_{\beta}$ is an isomorphism of vector spaces $V \rightarrow \mathbb{F}^{n}$.

Matrices and Linear Maps If V, W are finite-dimensional, then any linear map $\mathrm{T}: V \rightarrow W$ can be described using matrix multiplication.

Example. If $A=\left(\begin{array}{cc}2 & -1 \\ 0 & -1 \\ -4 & 3\end{array}\right)$, then the linear map $\mathrm{L}_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}($ left-multiplication by A) is

$$
\mathrm{L}_{A}\binom{x}{y}=\left(\begin{array}{cc}
2 & -1 \\
0 & -1 \\
-4 & 3
\end{array}\right)\binom{x}{y}=\left(\begin{array}{c}
2 x-y \\
-y \\
3 y-4 x
\end{array}\right)
$$

The linear map in fact defines the matrix A; we recover the columns of the matrix by feeding the standard basis vectors to the linear map.

$$
\left(\begin{array}{c}
2 \\
0 \\
-4
\end{array}\right)=\mathrm{L}_{A}\binom{1}{0} \quad\left(\begin{array}{c}
-1 \\
-1 \\
3
\end{array}\right)=\mathrm{L}_{A}\binom{0}{1}
$$

More generally, if $\mathrm{T} \in \mathcal{L}(V, W)$ and $\beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and $\gamma=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ are bases of V, W respectively, then the matrix of T with respect to β and γ is

$$
[\mathrm{T}]_{\beta}^{\gamma}=\left(\left[\mathrm{T}\left(\mathbf{v}_{1}\right)\right]_{\gamma} \cdots\left[\mathrm{T}\left(\mathbf{v}_{n}\right)\right]_{\gamma}\right) \in M_{m \times n}(\mathbb{F})
$$

whose $j^{\text {th }}$ column is obtained by feeding the $j^{\text {th }}$ basis vector of β to T and taking its co-ordinate vector with respect to γ. This fits naturally with the co-ordinate isomorphisms

$$
\mathrm{T}(\mathbf{v})=\mathbf{w} \Longleftrightarrow[\mathrm{T}]_{\beta}^{\gamma}[\mathbf{v}]_{\beta}=[\mathbf{w}]_{\gamma}
$$

There are two special cases when $V=W$:

- If $\beta=\gamma$, then we simply write $[\mathrm{T}]_{\beta}$ instead of $[\mathrm{T}]_{\beta}^{\beta}$.
- If $\mathrm{T}=\mathrm{I}$ is the identity map, then $Q_{\beta}^{\gamma}:=[\mathrm{I}]_{\beta}^{\gamma}$ is the change of co-ordinate matrix from β to γ.

Being able to convert linear maps into matrix multiplication is a central skill in linear algebra. Test your comfort by working through the following; if everything feels familiar, you should consider yourself in a good place as far as pre-requisites are concerned!

Example. Let $\mathrm{T}: P_{2}(\mathbb{R}) \rightarrow P_{1}(\mathbb{R})$ be the linear map defined by differentiation

$$
\begin{equation*}
\mathrm{T}\left(a+b x+c x^{2}\right)=b+2 c x \tag{*}
\end{equation*}
$$

The standard bases of $P_{2}(\mathbb{R})$ and $P_{1}(\mathbb{R})$ are, respectively, $\beta=\left\{1, x, x^{2}\right\}$ and $\gamma=\{1, x\}$. Observe that

$$
\begin{aligned}
& {[\mathrm{T}(1)]_{\gamma}=[0]_{\gamma}=\binom{0}{0}, \quad[\mathrm{~T}(x)]_{\gamma}=[1]_{\gamma}=\binom{1}{0}, \quad\left[\mathrm{~T}\left(x^{2}\right)\right]_{\gamma}=[2 x]_{\gamma}=\binom{0}{2}} \\
& \Longrightarrow[\mathrm{~T}]_{\beta}^{\gamma}=\left([\mathrm{T}(1)]_{\gamma}[\mathrm{T}(x)]_{\gamma}\left[\mathrm{T}\left(x^{2}\right)\right]_{\gamma}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Written in co-ordinates, we see the original linear map (*)

$$
\left[\mathrm{T}\left(a+b x+c x^{2}\right)\right]_{\gamma}=[\mathrm{T}]_{\beta}^{\gamma}\left[a+b x+c x^{2}\right]_{\beta}=\left(\begin{array}{lll}
0 & 1 & 0 \tag{†}\\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{b}{2 c}=[b+2 c x]_{\gamma}
$$

1. $\eta=\left\{1+x, x+x^{2}, x^{2}+1\right\}$ is also a basis of $P_{2}(\mathbb{R})$. Show that

$$
[T]_{\eta}^{\gamma}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 2
\end{array}\right)
$$

2. As in (\dagger) above, the matrix multiplication

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{a+b}{2 b+2 c}
$$

corresponds to an equation $[\mathrm{T}(p)]_{\gamma}=[\mathrm{T}]_{\eta}^{\gamma}[p]_{\eta}$ for some polynomial $p(x)$; what is $p(x)$ in terms of a, b, c ?
3. Find the change of co-ordinate matrix Q_{η}^{β} and check that the matrices of T are related by

$$
[\mathrm{T}]_{\eta}^{\gamma}=[\mathrm{T}]_{\beta}^{\gamma} Q_{\eta}^{\beta}
$$

1 Diagonalizability \& the Cayley-Hamilton Theorem

1.1 Eigenvalues, Eigenvectors \& Diagonalization (Review)

Definition 1.1. Suppose V is a vector space over \mathbb{F} and $\mathrm{T} \in \mathcal{L}(V)$. A non-zero $\mathbf{v} \in V$ is an eigenvector of T with eigenvalue $\lambda \in \mathbb{F}$ (together an eigenpair) if

$$
\mathrm{T}(\mathbf{v})=\lambda \mathbf{v}
$$

For matrices, the eigenvalues/vectors of $A \in M_{n}(\mathbb{F})$ are precisely those of $\mathrm{L}_{A} \in \mathcal{L}\left(\mathbb{F}^{n}\right)$.
Suppose λ is an eigenvalue of T;

1. The eigenspace of λ is the nullspace $E_{\lambda}:=\mathcal{N}(\mathrm{T}-\lambda \mathrm{I})$.
2. The geometric multiplicity of λ of the dimension $\operatorname{dim} E_{\lambda}$.

We say that T is diagonalizable if there exists a basis of eigenvectors; an eigenbasis.
We start by recalling a couple of basic facts, the first of which is easily proved by induction.
Lemma 1.2. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are eigenvectors corresponding to distinct eigenvalues, then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent.
Moreover, if $\operatorname{dim}_{\mathbb{F}} V=n$ and $\mathrm{T} \in \mathcal{L}(V)$ has n distinct eigenvalues, then T is diagonalizable.

Eigenvalues and Eigenvectors in finite dimensions

If $\operatorname{dim}_{\mathbb{F}} V=n$ and ϵ is a basis, then the eigenvector definition is equivalent to a matrix equation

$$
[\mathrm{T}]_{\epsilon}[\mathbf{v}]_{\epsilon}=\lambda[\mathbf{v}]_{\epsilon}
$$

In such a situation, T being diagonalizable means $\exists \beta$ such that $[\mathrm{T}]_{\beta}$ is a diagonal matrix

$$
[\mathrm{T}]_{\beta}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right)
$$

Thankfully there is systematic way to find eigenvalues and eigenvectors in finite-dimensions:

1. Choose any basis ϵ of V and compute the matrix $A=[\mathrm{T}]_{\epsilon} \in M_{n}(\mathbb{F})$.
2. Observe that

$$
\begin{aligned}
\lambda \in \mathbb{F} \text { is an eigenvalue } & \Longleftrightarrow \exists[\mathbf{v}]_{\epsilon} \in \mathbb{F}^{n} \backslash\{\mathbf{0}\} \text { such that } A[\mathbf{v}]_{\epsilon}=\lambda[\mathbf{v}]_{\epsilon} \\
& \Longleftrightarrow \exists[\mathbf{v}]_{\epsilon} \in \mathbb{F}^{n} \backslash\{\mathbf{0}\} \text { such that }(A-\lambda I)[\mathbf{v}]_{\epsilon}=\mathbf{0} \\
& \Longleftrightarrow \operatorname{det}(A-\lambda I)=0
\end{aligned}
$$

This last is a degree n polynomial equation whose roots are the eigenvalues.
3. For each eigenvalue λ_{j}, compute the eigenspace $E_{\lambda_{j}}=\mathcal{N}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)$ to find the eigenvectors. Remember that $E_{\lambda_{j}}$ is a subspace of the original vector space V, so translate back if necessary!

Definition 1.3. The characteristic polynomial of $\mathrm{T} \in \mathcal{L}(V)$ is the degree- n polynomial

$$
p(t):=\operatorname{det}(\mathrm{T}-t \mathrm{I})
$$

The eigenvalues of T are precisely the solutions to the characteristic equation $p(t)=0$.
Examples 1.4. 1. $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ has characteristic polynomial $p(t)=t^{2}+1=(t+i)(t-i)$. As a linear map $\mathrm{L}_{A} \in \mathcal{L}\left(\mathbb{R}^{2}\right)$, A has no eigenvalues and no eigenvectors!
As a linear map $L_{A} \in \mathcal{L}\left(\mathbb{C}^{2}\right)$, we have two eigenvalues $\pm i$. Indeed

$$
(A-i \mathrm{I}) \mathbf{v}=\left(\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right) \mathbf{v} \Longrightarrow E_{i}=\operatorname{Span}\binom{i}{1}
$$

and similarly $E_{-i}=\operatorname{Span}\binom{-i}{1}$. We therefore have an eigenbasis $\beta=\left\{\binom{i}{1},\binom{-i}{1}\right\}$ (of \mathbb{C}^{2}), with respect to which

$$
\left[\mathrm{L}_{A}\right]_{\beta}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

2. Let $\mathrm{T} \in \mathcal{L}\left(P_{2}(\mathbb{R})\right)$ be defined by

$$
\mathrm{T}(f)(x)=f(x)+(x-1) f^{\prime}(x)
$$

With respect to the standard basis $\epsilon=\left\{1, x, x^{2}\right\}$, we have the non-diagonal matrix

$$
A=[\mathrm{T}]_{\epsilon}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 2 & -2 \\
0 & 0 & 3
\end{array}\right) \Longrightarrow p(t)=\operatorname{det}(A-t I)=(1-t)(2-t)(3-t)
$$

With three distinct eigenvalues, T is diagonalizable. To find the eigenvectors, compute the nullspaces:
$\lambda_{1}=1: \quad \mathbf{0}=\left(A-\lambda_{1} I\right)\left[\mathbf{v}_{1}\right]_{\epsilon}=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 2\end{array}\right)\left[\mathbf{v}_{1}\right]_{\epsilon} \Longrightarrow\left[\mathbf{v}_{1}\right]_{\epsilon} \in \operatorname{Span}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \Longrightarrow E_{1}=\operatorname{Span}\{1\}$
$\lambda_{2}=2: \quad A-\lambda_{2} I=\left(\begin{array}{ccc}-1 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1\end{array}\right) \Longrightarrow\left[\mathbf{v}_{2}\right]_{\epsilon} \in \operatorname{Span}\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right) \Longrightarrow E_{2}=\operatorname{Span}\{1-x\}$
$\lambda_{3}=3: \quad A-\lambda_{3} I=\left(\begin{array}{ccc}-2 & -1 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & 0\end{array}\right) \Longrightarrow\left[\mathbf{v}_{3}\right]_{\epsilon} \in \operatorname{Span}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right) \Longrightarrow E_{3}=\operatorname{Span}\left\{1-2 x+x^{2}\right\}$
Making a sensible choice of non-zero eigenvectors, we obtain an eigenbasis, with respect to which the linear map is necessarily diagonal

$$
\begin{aligned}
& \beta=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{1,1-x, 1-2 x+x^{2}\right\}=\left\{1,1-x,(1-x)^{2}\right\} \\
& \mathrm{T}\left(a+b(1-x)+c(1-x)^{2}\right)=a+2 b(1-x)+3 c(1-x)^{2} \\
& {[\mathrm{~T}]_{\beta}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)}
\end{aligned}
$$

Conditions for diagonalizability of finite-dimensional operators

We now borrow a little terminology from the theory of polynomials.
Definition 1.5. Let \mathbb{F} be a field and $p(t)$ a polynomial with coefficients in \mathbb{F}.

1. Let $\lambda \in \mathbb{F}$ be a root; $p(\lambda)=0$. The algebraic multiplicity mult (λ) is the largest power of $\lambda-t$ to divide $p(t)$. Otherwise said, there exists ${ }^{1}$ some polynomial $q(t)$ such that

$$
p(t)=(\lambda-t)^{\operatorname{mult}(\lambda)} q(t) \quad \text { and } \quad q(\lambda) \neq 0
$$

2. We say that $p(t)$ splits over \mathbb{F} if it factorizes completely into linear factors; equivalently $\exists a, \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}$ such that

$$
p(t)=a\left(\lambda_{1}-t\right)^{m_{1}} \cdots\left(\lambda_{k}-t\right)^{m_{k}}
$$

When $p(t)$ splits, the algebraic multiplicities sum to the degree n of the polynomial

$$
n=m_{1}+\cdots+m_{k}
$$

Of course, we are most interested when $p(t)$ is the characteristic polynomial of a linear map $\mathrm{T} \in \mathcal{L}(V)$. If such a polynomial splits, then $a=1$ and $\lambda_{1}, \ldots, \lambda_{k}$ are necessarily the (distinct) eigenvalues of T .

Example 1.6. The field matters! For instance $p(t)=t^{2}+1=(t-i)(t+i)=-(i-t)(-i-t)$ splits over \mathbb{C} but not over \mathbb{R}. Its roots are plainly $\pm i$.

For the purposes of review, we state the main result; this will be proved in the next section.
Theorem 1.7. Let V be finite-dimensional. A linear map $\mathrm{T} \in \mathcal{L}(V)$ is diagonalizable if and only if,

1. Its characteristic polynomial splits over \mathbb{F}, and,
2. The geometric and algebraic multiplicities of each eigenvalue are equal; $\operatorname{dim} E_{\lambda_{j}}=\operatorname{mult}\left(\lambda_{j}\right)$.

Example 1.8. The matrix $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$ is easily seen to have eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=5$. Indeed

$$
\begin{aligned}
& p(t)=(3-t)^{2}(5-t), \quad \operatorname{mult}(3)=2, \quad \operatorname{mult}(5)=1 \\
& E_{3}=\operatorname{Span}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad E_{5}=\operatorname{Span}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \operatorname{dim} E_{3}=\operatorname{dim} E_{5}=1
\end{aligned}
$$

This matrix is non-diagonalizable since $\operatorname{dim} E_{3}=1 \neq 2=\operatorname{mult}(3)$.

Everything prior to this should be review. If it feels very unfamiliar, revisit your notes from 121A, particularly sections 5.1 and 5.2 of the textbook.

[^0]Exercises 1.1 1. For each matrix over \mathbb{R}; find its characteristic polynomial, its eigenvalues/spaces, and its algebraic and geometric multiplicities; decide if it is diagonalizable.
(a) $A=\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3\end{array}\right)$
(b) $B=\left(\begin{array}{cccc}-1 & 6 & 0 & 0 \\ -2 & 6 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 & 3\end{array}\right)$
2. Suppose A is a real matrix with eigenpair (λ, \mathbf{v}). If $\lambda \notin \mathbb{R}$ show that $(\bar{\lambda}, \overline{\mathbf{v}})$ is also an eigenpair.
3. Show that the characteristic polynomial of $A=\left(\begin{array}{cc}3 & -4 \\ 4 & 3\end{array}\right)$ does not split over \mathbb{R}. Diagonalize A over C.
4. Give an example of a 2×2 matrix whose entries are rational numbers and whose characteristic polynomial splits over \mathbb{R}, but not over \mathbb{Q}.
5. Diagonalize $L_{C} \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ where $C=\left(\begin{array}{cc}2 i & 1 \\ 2 & 0\end{array}\right)$.
6. If $p(t)$ splits, explain why

$$
\operatorname{det} \mathrm{T}=\lambda_{1}^{\operatorname{mult}\left(\lambda_{1}\right)} \cdots \lambda_{k}^{\operatorname{mult}\left(\lambda_{k}\right)}
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct eigenvalues of T .
7. Suppose $\mathrm{T} \in \mathcal{L}(V)$ is invertible with eigenvalue λ. Prove that λ^{-1} is an eigenvalue of T^{-1} with the same eigenspace E_{λ}. If T is diagonalizable, prove that T^{-1} is also diagonalizable.
8. If V is finite-dimensional and $\mathrm{T} \in \mathcal{L}(V)$, we may define $\operatorname{det} \mathrm{T}$ to equal $\operatorname{det}[\mathrm{T}]_{\beta}$, where β is any basis of V. Explain why the choice of basis does not matter; that is, if γ is any other basis of V, we have $\operatorname{det}[\mathrm{T}]_{\gamma}=\operatorname{det}[\mathrm{T}]_{\beta}$.

1.2 Invariant Subspaces and the Cayley-Hamilton Theorem

The proof of Theorem 1.7 is facilitated by a new concept, of which eigenspaces are a special case.
Definition 1.9. Suppose $\mathrm{T} \in \mathcal{L}(V)$. A subspace W of V is T-invariant if $\mathrm{T}(W) \subseteq W$. In such a case, the restriction of T to W is the linear map

$$
\mathrm{T}_{W}: W \rightarrow W: \mathbf{w} \mapsto \mathrm{T}(\mathbf{w})
$$

Examples 1.10. 1. The trivial subspace $\{\mathbf{0}\}$ and the entire vector space V are invariant for any linear map $\mathrm{T} \in \mathcal{L}(V)$.
2. Every eigenspace is invariant; if $\mathbf{v} \in E_{\lambda}$, then $\mathrm{T}(\mathbf{v})=\lambda \mathbf{v} \in E_{\lambda}$.
3. Continuing Example 1.8, if $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$ then $W=\operatorname{Span}\{\mathbf{i}, \mathbf{j}\}$ is an invariant subspace for the linear map L_{A}. Indeed

$$
A(x \mathbf{i}+y \mathbf{j})=(3 x+y) \mathbf{i}+3 y \mathbf{j} \in W
$$

W is an example of a generalized eigenspace; we'll study these properly at the end of term.
To prove our diagonalization criterion, we need to see how to factorize the characteristic polynomial. It turns out that factors of $p(t)$ correspond to T-invariant subspaces!

Example 1.11. $W=\operatorname{Span}\{\mathbf{i}, \mathbf{j}\}$ is an invariant subspace of $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 1 \\ 0 & 0 & 2\end{array}\right) \in M_{3}(\mathbb{R})$. With respect to the standard basis, the restriction $\left[\mathrm{L}_{A}\right]_{W}$ has matrix $\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$. The characteristic polynomial $p_{W}(t)$ of the restriction is plainly a factor of the whole,

$$
p(t)=(1-t)(2-t)(3-t)=(2-t) p_{W}(t)
$$

Theorem 1.12. Suppose $\mathrm{T} \in \mathcal{L}(V)$, that $\operatorname{dim} V$ is finite and that W is a T-invariant subspace of V. Then the characteristic polynomial of the restriction T_{W} divides that of T .

The proof simply abstracts the approach of the example.
Proof. Extend a basis β_{W} of W to a basis β of V. Since $\mathrm{T}(\mathbf{w}) \in \operatorname{Span} \beta_{W}$ for each $\mathbf{w} \in W$, we see that the matrix of $[\mathrm{T}]$ has block form

$$
[\mathrm{T}]_{\beta}=\left(\begin{array}{l|l}
A & B \\
\hline O & C
\end{array}\right) \Longrightarrow p(t)=\operatorname{det}(A-t I) \operatorname{det}(C-t I)=p_{W}(t) \operatorname{det}(C-t I)
$$

where $p_{W}(t)$ is the characteristic polynomial, and $A=\left[\mathrm{T}_{W}\right]_{\beta_{W}}$ the matrix of the restriction T_{W}.

Corollary 1.13. If λ is an eigenvalue of T , then $\mathrm{T}_{E_{\lambda}}=\lambda \mathrm{I}_{E_{\lambda}}$ is a multiple of the identity, whence,

1. The characteristic polynomial of the restriction $\mathrm{T}_{E_{\lambda}}$ is $p_{\lambda}(t)=(\lambda-t)^{\operatorname{dim} E_{\lambda}}$.
2. $p_{\lambda}(t)$ divides the characteristic polynomial of T . In particular $\operatorname{dim} E_{\lambda} \leq \operatorname{mult}(\lambda)$.

We are now in a position to state and prove an extended version of Theorem 1.7 .
Theorem 1.14. Suppose $\operatorname{dim}_{\mathbb{F}} V=n$ and that $T \in \mathcal{L}(V)$ has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. The following are equivalent:

1. T is diagonalizable.
2. The characteristic polynomial splits over \mathbb{F} and $\operatorname{dim} E_{\lambda_{j}}=\operatorname{mult}\left(\lambda_{j}\right)$ for each j; indeed

$$
p(t)=p_{\lambda_{1}}(t) \cdots p_{\lambda_{k}}(t)=\left(\lambda_{1}-t\right)^{\operatorname{dim} E_{\lambda_{1}} \cdots\left(\lambda_{k}-t\right)^{\operatorname{dim} E_{\lambda_{k}}} .}
$$

3. $\sum_{j=1}^{k} \operatorname{dim} E_{\lambda_{j}}=n$
4. $V=E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{k}}$

Example 1.15. $\quad A=\left(\begin{array}{ccc}7 & 0 & -12 \\ 0 & 1 & 0 \\ 2 & 0 & -3\end{array}\right)$ is diagonalizable. Indeed $p(t)=(1-t)^{2}(3-t)$ splits, and we have

λ	1	3
$\operatorname{mult}(\lambda)$	2	1
E_{λ}	$\operatorname{Span}\left\{\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$	$\operatorname{Span}\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)$
$\operatorname{dim} E_{\lambda}$	2	1

With respect to the eigenbasis $\beta=\left\{\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)\right\}$, the map is diagonal $\left[L_{A}\right]_{\beta}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)$
Proof. $(1 \Rightarrow 2)$ If T is diagonalizable with eigenbasis β, then $[\mathrm{T}]_{\beta}$ is diagonal. But then

$$
p(t)=\left(\lambda_{1}-t\right)^{m_{1}} \cdots\left(\lambda_{k}-t\right)^{m_{k}}
$$

splits and $\sum \operatorname{mult}\left(\lambda_{i}\right)=n$. The cardinality n of an eigenbasis is at most $\sum \operatorname{dim} E_{\lambda_{i}}$ since every element is an (independent) eigenvector. By Corollary $1.13\left(\operatorname{dim} E_{\lambda_{j}} \leq \operatorname{mult}\left(\lambda_{j}\right)\right)$ we see that

$$
n \leq \sum \operatorname{dim} E_{\lambda_{j}} \leq \sum \operatorname{mult}\left(\lambda_{j}\right)=n \Longrightarrow \forall j, \operatorname{dim} E_{\lambda_{j}}=\operatorname{mult}\left(\lambda_{j}\right)
$$

whence the inequalities are equalities with each pair equal $\operatorname{dim} E_{\lambda_{j}}=\operatorname{mult}\left(\lambda_{j}\right)$
$(2 \Rightarrow 3) p(t)$ splits $\Longrightarrow n=\sum \operatorname{mult}\left(\lambda_{j}\right)=\sum \operatorname{dim} E_{\lambda_{j}}$
$(3 \Rightarrow 4)$ Assume $E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{j}}$ exists ${ }^{2}$ If $\left(\lambda_{j+1}, \mathbf{v}_{j+1}\right)$ is an eigenpair, then $\mathbf{v}_{j+1} \notin E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{j}}$ for otherwise this would contradict Lemma 1.2 .
By induction, $E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{k}}$ exists; by assumption it has dimension $n=\operatorname{dim} V$ and therefore equals V.
$(4 \Rightarrow 1)$ For each j, choose a basis β_{j} of $E_{\lambda_{j}}$. Then $\beta:=\beta_{1} \cup \cdots \cup \beta_{k}$ is a basis of V consisting of eigenvectors of T ; an eigenbasis.

[^1]
T-cyclic Subspaces and the Cayley-Hamilton Theorem

We finish this chapter by introducing a general family of invariant subspaces and using them to prove a startling result.

Definition 1.16. Let $\mathrm{T} \in \mathcal{L}(V)$ and let $\mathbf{v} \in V$. The T-cyclic subspace generated by \mathbf{v} is the span

$$
\langle\mathbf{v}\rangle=\operatorname{Span}\left\{\mathbf{v}, \mathrm{T}(\mathbf{v}), \mathrm{T}^{2}(\mathbf{v}), \ldots\right\}
$$

Example 1.17. Recalling Example 1.10 .3 Let $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$, and $\mathbf{v}=\mathbf{i}+\mathbf{k}$. It is easy to see that

$$
A \mathbf{v}=3 \mathbf{i}+5 \mathbf{k}, \quad A^{2} \mathbf{v}=9 \mathbf{i}+25 \mathbf{k}, \quad \ldots, \quad A^{m} \mathbf{v}=3^{m} \mathbf{i}+5^{m} \mathbf{k}
$$

all of which lie in $\operatorname{Span}\{\mathbf{i}, \mathbf{k}\}$. Plainly this is the L_{A}-cyclic subspace $\langle\mathbf{i}+\mathbf{k}\rangle$.
The proof of the following basic result is left as an exercise.
Lemma 1.18. $\langle\mathbf{v}\rangle$ is the smallest T-invariant subspace of V containing \mathbf{v}, specifically:

1. $\langle\mathbf{v}\rangle$ is T-invariant.
2. If $W \leq V$ is T-invariant and $\mathbf{v} \in W$, then $\langle\mathbf{v}\rangle \leq W$.
3. $\operatorname{dim}\langle\mathbf{v}\rangle=1 \Longleftrightarrow \mathbf{v}$ is an eigenvector of T .

We were lucky in the example that the general form $A^{m} \mathbf{v}$ was so clear. It is helpful to develop a more precise test for identifying the dimension and a basis of a T-cyclic subspace.
Suppose a T-cyclic subspace $\langle\mathbf{v}\rangle=\operatorname{Span}\left\{\mathbf{v}, \mathrm{T}(\mathbf{v}), \mathrm{T}^{2}(\mathbf{v}), \ldots\right\}$ has finite dimension ${ }^{3}$ Let $k \geq 1$ be maximal such that the set

$$
\left\{\mathbf{v}, \mathrm{T}(\mathbf{v}), \ldots, \mathrm{T}^{k-1}(\mathbf{v})\right\}
$$

is linearly independent.

- If k doesn't exist, the infinite linearly independent set $\{\mathbf{v}, \mathrm{T}(\mathbf{v}), \ldots\}$ contradicts $\operatorname{dim}\langle\mathbf{v}\rangle<\infty$.
- By the maximality of $k, \mathrm{~T}^{k}(\mathbf{v}) \in \operatorname{Span}\left\{\mathbf{v}, \mathrm{T}(\mathbf{v}), \ldots, \mathrm{T}^{k-1}(\mathbf{v})\right\} ;$ by induction this extends to

$$
j \geq k \Longrightarrow \mathrm{~T}^{j}(\mathbf{v}) \in \operatorname{Span}\left\{\mathbf{v}, \mathrm{T}(\mathbf{v}), \ldots, \mathrm{T}^{k-1}(\mathbf{v})\right\}
$$

It follows that $\langle\mathbf{v}\rangle=\operatorname{Span}\left\{\mathbf{v}, \mathrm{T}(\mathbf{v}), \ldots, \mathrm{T}^{k-1}(\mathbf{v})\right\}$, and we've proved a useful criterion.
Theorem 1.19. Suppose $\mathbf{v} \neq 0$, then

$$
\begin{aligned}
\operatorname{dim}\langle\mathbf{v}\rangle=k & \Longleftrightarrow\left\{\mathbf{v}, \mathrm{~T}(\mathbf{v}), \ldots, \mathrm{T}^{k-1}(\mathbf{v})\right\} \text { is a basis of }\langle\mathbf{v}\rangle \\
& \Longleftrightarrow k \text { is maximal such that }\left\{\mathbf{v}, \mathrm{T}(\mathbf{v}), \ldots, \mathrm{T}^{k-1}(\mathbf{v})\right\} \text { is linearly independent } \\
& \Longleftrightarrow k \text { is minimal such that } \mathrm{T}^{k}(\mathbf{v}) \in \operatorname{Span}\left\{\mathbf{v}, \mathrm{T}(\mathbf{v}), \ldots, \mathrm{T}^{k-1}(\mathbf{v})\right\}
\end{aligned}
$$

[^2]Examples 1.20. 1. According to the Theorem, in Example 1.17 we need only have noticed

- $\mathbf{v}=\mathbf{i}+\mathbf{k}$ and $A \mathbf{v}=3 \mathbf{i}+5 \mathbf{k}$ are linearly independent.
- That $A^{2}(\mathbf{i}+\mathbf{k})=9 \mathbf{i}+25 \mathbf{k} \in \operatorname{Span}\{\mathbf{v}, A \mathbf{v}\}$.

We could then conclude that $\langle\mathbf{v}\rangle=\operatorname{Span}\{\mathbf{v}, A \mathbf{v}\}$ has dimension 2 .
2. Let $\mathrm{T}(p(x))=3 p(x)-p^{\prime \prime}(x)$ viewed as a linear map $\mathrm{T} \in \mathcal{L}\left(P_{2}(\mathbb{R})\right)$ and consider the T-cyclic subspace generated by the polynomial $p(x)=x^{2}$

$$
\mathrm{T}\left(x^{2}\right)=3 x^{2}-2, \quad \mathrm{~T}^{2}\left(x^{2}\right)=\mathrm{T}\left(3 x^{2}-2\right)=3\left(3 x^{2}-2\right)-6=9 x^{2}-12, \quad \ldots
$$

Observe that $\left\{x^{2}, \mathrm{~T}\left(x^{2}\right)\right\}$ is linearly independent, but that

$$
\mathrm{T}^{2}\left(x^{2}\right)=9 x^{2}-12=-9 x^{2}+6\left(3 x^{2}-2\right) \in \operatorname{Span}\left\{x^{2}, \mathrm{~T}\left(x^{2}\right)\right\}
$$

We conclude that $\operatorname{dim}\left\langle x^{2}\right\rangle=2$. An alternative basis for $\left\langle x^{2}\right\rangle$ is plainly $\left\{1, x^{2}\right\}$.
We finish by considering the interaction of a T-cyclic subspace with the characteristic polynomial. Surprisingly, the coefficients of the characteristic polynomial and the linear combination coincide.

Continuing the Example, if $W=\left\langle x^{2}\right\rangle$ and $\beta_{W}=\left\{x^{2}, \mathrm{~T}\left(x^{2}\right)\right\}=\left\{x^{2}, 3 x^{2}-2\right\}$, then

$$
\left[\mathrm{T}_{W}\right]_{\beta_{W}}=\left(\begin{array}{cc}
0 & -9 \\
1 & 6
\end{array}\right) \Longrightarrow p_{W}(t)=t^{2}-6 t+9
$$

Theorem 1.21. Let $\mathrm{T} \in \mathcal{L}(V)$ and suppose $W=\langle\mathbf{w}\rangle$ has $\operatorname{dim} W=k$ with basis

$$
\beta_{W}=\left\{\mathbf{w}, \mathrm{T}(\mathbf{w}), \ldots, \mathrm{T}^{k-1}(\mathbf{w})\right\}
$$

in accordance with Theorem 1.19, then

1. If $\mathrm{T}^{k}(\mathbf{w})+a_{k-1} \mathrm{~T}^{k-1}(\mathbf{w})+\cdots+a_{0} \mathbf{w}=\mathbf{0}$, then the characteristic polynomial of T_{W} is

$$
p_{W}(t)=(-1)^{k}\left(t^{k}+a_{k-1} t^{k-1}+\cdots+a_{1} t+a_{0}\right)
$$

2. $p_{W}\left(\mathrm{~T}_{W}\right)=0$ is the zero map on W.

Proof. 1. This is an exercise.
2. Write $S \in \mathcal{L}(V)$ for the linear map

$$
\mathrm{S}:=p_{W}(\mathrm{~T})=(-1)^{k}\left(\mathrm{~T}^{k}+a_{k-1} \mathrm{~T}^{k-1}+\cdots+a_{0} \mathrm{I}\right)
$$

Part 1 says $S(\mathbf{w})=\mathbf{0}$. Since S is a polynomial in T, it commutes with all powers of T :

$$
\forall j, \mathrm{~S}\left(\mathrm{~T}^{j}(\mathbf{w})\right)=\mathrm{T}^{j}(\mathrm{~S}(\mathbf{w}))=\mathbf{0}
$$

Since S is zero on the basis β_{W} of W, we see that S_{W} is the zero function.

With a little sneakiness, we can drop the W's in the second part of the Theorem and observe an intimate relation between a linear map and its characteristic polynomial.

Corollary 1.22 (Cayley-Hamilton). If V is finite-dimensional, then $T \in \mathcal{L}(V)$ satisfies its characteristic polynomial; $p(\mathrm{~T})=0$.

Proof. Let $\mathbf{w} \in V$ and consider the cyclic subspace $W=\langle\mathbf{w}\rangle$ generated by \mathbf{w}. By Theorem 1.12,

$$
p(t)=q_{W}(t) p_{W}(t)
$$

for some polynomial q_{W}. But the previous result says that $p_{W}(\mathrm{~T})(\mathbf{w})=\mathbf{0}$, whence

$$
p(\mathrm{~T})(\mathbf{w})=\mathbf{0}
$$

Since we may apply this reasoning to any $\mathbf{w} \in V$, we conclude that $p(T)$ is the zero function.
Examples 1.23. 1. $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right)$ has $p(t)=t^{2}-6 t+5$ and we confirm:

$$
A^{2}-6 A=\left(\begin{array}{cc}
7 & 6 \\
18 & 19
\end{array}\right)-6\left(\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right)=-5 I
$$

It may seem like a strange thing to do for this matrix, but the characteristic equation can be used to calculate the inverse of A :

$$
A^{2}-6 A+5 I=0 \Longrightarrow A(A-6 I)=-5 I \Longrightarrow A^{-1}=\frac{1}{5}(6 I-A)=\frac{1}{5}\left(\begin{array}{cc}
4 & -1 \\
-3 & 2
\end{array}\right)
$$

2. We use the Cayley-Hamilton Theorem to compute A^{4} when

$$
A=\left(\begin{array}{ccc}
2 & -1 & \frac{8}{3} \\
0 & 1 & -6 \\
0 & 0 & 2
\end{array}\right)
$$

The characteristic polynomial is

$$
p(t)=(2-t)^{2}(1-t)=4-8 t+5 t^{2}-t^{3}
$$

By Cayley-Hamilton,

$$
\begin{aligned}
A^{4} & =A A^{3}=A\left(5 A^{2}-8 A+4 I\right) \\
& =5 A^{3}-8 A^{2}+4 A=5\left(5 A^{2}-8 A+4 I\right)-8 A^{2}+4 A \\
& =17 A^{2}-36 A+20 I=17\left(\begin{array}{ccc}
4 & -3 & \frac{50}{3} \\
0 & 1 & -18 \\
0 & 0 & 4
\end{array}\right)-36\left(\begin{array}{ccc}
2 & -1 & \frac{8}{3} \\
0 & 1 & -6 \\
0 & 0 & 2
\end{array}\right)+20\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
16 & -15 & \frac{562}{3} \\
0 & 1 & -90 \\
0 & 0 & 16
\end{array}\right)
\end{aligned}
$$

3. Recall Example 1.4.2, where the linear map $\mathrm{T}(f(x))=f(x)+(x-1) f^{\prime}(x)$ had

$$
p(t)=(1-t)(2-t)(3-t)=-t^{3}+6 t^{2}-11 t+6
$$

By Cayley-Hamilton, $\mathrm{T}^{3}=6 \mathrm{~T}^{2}-11 \mathrm{~T}+6 \mathrm{I}$. You can check this explicitly, after first computing $\mathrm{T}^{2}(f(x))=f(x)+3(x-1) f^{\prime}(x)+(x-1)^{2} f^{\prime \prime}(x)$, etc.

Cayley-Hamilton can also be used to simplify higher powers of T and even to compute the inverse!

$$
\begin{aligned}
\mathrm{I}=\frac{1}{6}\left(\mathrm{~T}^{3}-6 \mathrm{~T}^{2}+11 \mathrm{~T}\right) & \Longrightarrow \mathrm{T}^{-1}=\frac{1}{6}\left(\mathrm{~T}^{2}-6 \mathrm{~T}+11 \mathrm{I}\right) \\
& \Longrightarrow \mathrm{T}^{-1}(f(x))=f(x)-\frac{1}{2}(x-1) f^{\prime}(x)+\frac{1}{6}(x-1)^{2} f^{\prime \prime}(x)
\end{aligned}
$$

Exercises 1.2 1. For the linear map $\mathrm{T}=\mathrm{L}_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ where $A=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 2\end{array}\right)$ find the T-cyclic subspace generated by the standard basis vector $\mathbf{e}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
2. Let $\mathrm{T}=\mathrm{L}_{A}$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 1 \\ 0 & 0 & 2\end{array}\right)$ and let $\mathbf{v}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$. Compute $\mathrm{T}(\mathbf{v})$ and $\mathrm{T}^{2}(\mathbf{v})$. Hence describe the T-cyclic subspace $\langle\mathbf{v}\rangle$ and its dimension.
3. Given $A=\left(\begin{array}{llll}2 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right)$, find two distinct L_{A}-invariant subspaces $W \leq \mathbb{R}^{4}$ such that $\operatorname{dim} W=3$.
4. Suppose that W and X are T-invariant subspaces of V. Prove that the sum

$$
W+X=\{\mathbf{w}+\mathbf{x}: \mathbf{w} \in W, \mathbf{x} \in X\}
$$

is also T-invariant.
5. Prove Lemma 1.18 ,
6. Give an example of an infinite-dimensional vector space V, a linear map $\mathrm{T} \in \mathcal{L}(V)$, and a vector \mathbf{v} such that $\langle\mathbf{v}\rangle=V$.
7. Let $\beta=\{\sin x, \cos x, 2 x \sin x, 3 x \cos x\}$ and $\mathrm{T}=\frac{\mathrm{d}}{\mathrm{d} x} \in \mathcal{L}(\operatorname{Span} \beta)$. Plainly the subspace $W:=$ Span $\{\sin x, \cos x\}$ is T-invariant. Compute the matrices $[\mathrm{T}]_{\beta}$ and $\left[\mathrm{T}_{W}\right]_{\beta_{W}}$ and observe that

$$
p(t)=\left(p_{W}(t)\right)^{2}
$$

8. Verify explicitly that $A=\left(\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right)$ satisfies its characteristic polynomial.
9. Check the details of Example 1.23 .3 and evaluate T^{4} as a linear combination of I, T and T^{2}. In particular, check the evaluation of $\mathrm{T}^{-1}(f(x))$.
10. Suppose a, b are constants with $a \neq 0$ and define $\mathrm{T}(f(x))=a f(x)+b f^{\prime}(x)$.
(a) Find an expression for the inverse $\mathrm{T}^{-1}(f(x))$ if $\mathrm{T} \in \mathcal{L}\left(P_{1}(\mathbb{R})\right)$
(b) Find an expression for the inverse $\mathrm{T}^{-1}(f(x))$ if $\mathrm{T} \in \mathcal{L}\left(P_{2}(\mathbb{R})\right)$

Your answers should be written in terms of f and its derivatives.
11. Let $\mathrm{T}(f)(x)=f^{\prime}(x)+\frac{1}{x} \int_{0}^{x} f(t) \mathrm{d} t$ be a linear map $\mathrm{T} \in \mathcal{L}\left(P_{2}(\mathbb{R})\right)$.
(a) Find the characteristic polynomial of T and identify its eigenspaces. Is T diagonalizable?
(b) Find $a, b, c \in \mathbb{R}$ such that $\mathrm{T}^{3}=a \mathrm{~T}^{2}+b \mathrm{~T}+c \mathrm{I}$.
(c) What are $\operatorname{dim} \mathcal{L}\left(P_{2}(\mathbb{R})\right)$ and $\operatorname{dim} \operatorname{Span}\left\{\mathrm{T}^{k}: k \in \mathbb{N}_{0}\right\}$? Explain.
12. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has non-zero determinant, use the Cayley-Hamilton Theorem to obtain the usual expression for A^{-1}.
13. Recall Examples 1.10.3 1.17, and 1.20 .1 with $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$.
(a) If $\mathbf{v}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, show that $\operatorname{det}\left(\mathbf{v}, A \mathbf{v}, A^{2} \mathbf{v}\right)=-4 y^{2} z$
(b) Hence determine all L_{A}-cyclic subspaces of \mathbb{R}^{3}.
14. (a) Consider Example 1.20 .2 where $\mathrm{T} \in \mathcal{L}\left(P_{2}(\mathbb{R})\right)$ is defined by $\mathrm{T}(p(x))=3 p(x)-p^{\prime \prime}(x)$. Prove that all T-cyclic subspaces have dimension ≤ 2.
(b) What if we instead consider $S \in \mathcal{L}\left(P_{2}(\mathbb{R})\right.$ defined by $S(p(x))=3 p(x)-p^{\prime}(x)$?
15. We prove part 1 of Theorem 1.21 .
(a) Explain why the matrix of T_{W} with respect to the basis β_{W} is

$$
\left[\mathrm{T}_{W}\right]_{\beta_{W}}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & 0 & & 0 & -a_{1} \\
0 & 1 & 0 & & 0 & -a_{2} \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & 0 & & 0 & -a_{k-2} \\
0 & 0 & 0 & \cdots & 1 & -a_{k-1}
\end{array}\right) \in M_{k}(\mathbb{F})
$$

(b) Compute the characteristic polynomial $p_{W}(t)=\operatorname{det}\left(\left[\mathrm{T}_{W}\right]_{\beta_{W}}-t I_{k}\right)$ by expanding the determinant along the first row.

[^0]: ${ }^{1}$ The existence follows from Descartes factor theorem and the division algorithm for polynomials.

[^1]: ${ }^{2}$ Distinct eigenspaces have trivial intersection: $i_{1} \neq i_{2} \leq j \Longrightarrow E_{i_{1}} \cap E_{i_{2}}=\{\mathbf{0}\}$.

[^2]: ${ }^{3}$ Necessarily the situation if $\operatorname{dim} V<\infty$, when we are thinking about characteristic polynomials.

