
3 Canonical Forms

3.1 Jordan Forms & Generalized Eigenvectors

Throughout this course we’ve concerned ourselves with variations of a general question: for a given
map T ∈ L(V), find a basis β such that the matrix [T]β is as close to diagonal as possible. In this
chapter we see what is possible when T is non-diagonalizable.

Example 3.1. The matrix A =
( −8 4
−25 12

)
∈ M2(R) has characteristic equation

p(t) = (−8 − t)(12 − t) + 4 · 25 = t2 − 4t + 4 = (t − 2)2

and thus a single eigenvalue λ = 2. It is non-diagonalizable since the eigenspace is one-dimensional

E2 = N
(
−10 4
−25 10

)
= Span

(
2
5

)
However, if we consider a basis β = {v1, v2} where v1 =

(
2
5

)
is an eigenvector, then [LA]β is upper-

triangular, which is better than nothing! How simple can we make this matrix? Let v2 = ( x
y ), then

Av2 =

(
−8x + 4y
−25x + 12y

)
= 2

(
x
y

)
+

(
−10x + 4y
−25x + 10y

)
= 2v2 + (−5x + 2y)v1

=⇒ [LA]β =

(
2 −5x + 2y
0 2

)
Since v2 cannot be parallel to v1, the only thing we cannot have is a diagonal matrix. The next best
thing is for the upper right corner be 1; for instance we could choose

β = {v1, v2} =

{(
2
5

)
,
(

1
3

)}
=⇒ [LA]β =

(
2 1
0 2

)

Definition 3.2. A Jordan block is a square matrix of the form

J =


λ 1

λ
. . .
. . . 1

λ


where all non-indicated entries are zero. Any 1 × 1 matrix is also a Jordan block.
A Jordan canonical form is a block-diagonal matrix diag(J1, . . . , Jm) where each Jk is a Jordan block.
A Jordan canonical basis for T ∈ L(V) is a basis β of V such that [T]β is a Jordan canonical form.

If a map is diagonalizable, then any eigenbasis is Jordan canonical and the corresponding Jordan
canonical form is diagonal. What about more generally? Does every non-diagonalizable map have a
Jordan canonical basis? If so, how can we find such?
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Example 3.3. It can easily be checked that β = {v1, v2, v3} =
{(

1
0
1

)
,
(

1
2
0

)
,
(

1
1
1

)}
is a Jordan canon-

ical basis for

A =

−1 2 3
−4 5 4
−2 1 4


(really LA ∈ L(R3)). Indeed

Av1 = 2v1, Av2 = 3v2, Av3 =

4
5
3

 =

1 + 3
2 + 3
0 + 3

 = v2 + 3v3 =⇒ [LA]β =

2 0 0
0 3 1
0 0 3


Generalized Eigenvectors

Example 3.3 was easy to check, but how would we go about finding a suitable β if we were merely
given A? We brute-forced this in Example 3.1, but such is not a reasonable approach in general.
Eigenvectors get us some of the way:

• v1 is an eigenvector in Example 3.1, but v2 is not.

• v1 and v2 are eigenvectors in Example 3.3, but v3 is not.

The practical question is how to fill out a Jordan canonical basis once we have a maximal independent
set of eigenvectors. We now define the necessary objects.

Definition 3.4. Suppose T ∈ L(V) has an eigenvalue λ. Its generalized eigenspace is

Kλ := {x ∈ V : (T − λI)k(x) = 0 for some k ∈ N} =
⋃

k∈N

N (T − λI)k

A generalized eigenvector is any non-zero v ∈ Kλ.

As with eigenspaces, the generalized eigenspaces of A ∈ Mn(F) are those of the map LA ∈ L(Fn).

It is easy to check that our earlier Jordan canonical bases consist of generalized eigenvectors.

Example 3.1: We have one eigenvalue λ = 2. Since (A − 2I)2 =
(

0 0
0 0

)
is the zero matrix, every

non-zero vector is a generalized eigenvector; plainly K2 = R2.

Example 3.3: We see that

(A − 2I)v1 = 0, (A − 3I)v2 = 0, (A − 3I)2v3 = (A − 3I)v2 = 0

whence β is a basis of generalized eigenvectors. Indeed

K3 = Span{v1, v2}, K2 = E2 = Span{v3}

though verifying this with current technology is a little awkward. . .
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In order to easily compute generalized eigenspaces, it is useful to invoke the main result of this
section. We postpone the proof for a while due to its meatiness.

Theorem 3.5. Suppose that the characteristic polynomial of T ∈ L(V) splits over F:

p(t) = (λ1 − t)m1 · · · (λk − t)mk

where the λj are the distinct eigenvalues of T with algebraic multiplicities mj. Then:

1. For each eigenvalue; (a) Kλ = N (T − λI)m and (b) dim Kλ = m.

2. V = Kλ1 ⊕ · · · ⊕ Kλk : there exists a basis of generalized eigenvectors.

Compare this with the statement on diagonalizability from the start of the course.
With regard to part 2; we shall eventually be able to choose this to be a Jordan canonical basis. In
conclusion: a map has a Jordan canonical basis if and only if its characteristic polynomial splits.

Examples 3.6. 1. Observe how Example 3.3 works in this language:

A =

−1 2 3
−4 5 4
−2 1 4

 =⇒ p(t) = (2 − t)1(3 − t)2

K2 = N (A − 2I)1 = Span

1
0
1

 =⇒ dim K2 = 1

K3 = N (A − 3I)2 = N

2 −1 −1
0 0 0
2 −1 −1

 = Span


1

2
0

 ,

1
1
1

 =⇒ dim K3 = 2

R3 = K2 ⊕ K3

2. We find the generalized eigenspaces of the matrix A =
( 5 2 −1

0 0 0
9 6 −1

)
The characteristic polynomial is

p(t) = det(A − λI) = −t
∣∣∣∣5 − t −1

9 −1 − t

∣∣∣∣ = −t(t2 − 5t + t − 5 + 9) = −(0 − t)1(2 − t)2

• λ = 0 has multiplicity 1; indeed K0 = N (A − 0I)1 = N (A) = Span
( 1

−1
3

)
is just the

eigenspace E0.
• λ = 2 has multiplicity 2,

K2 = N (A − 2I)2 = N

3 2 −1
0 −2 0
9 6 −3

2

= N

0 −4 0
0 4 0
0 −12 0

 = Span


1

0
0

 ,

0
0
1


In this case the corresponding eigenspace is one-dimensional, E2 = Span

(
1
0
3

)
⪇ K2, and

the matrix is non-diagonalizable.

Observe also that R3 = K0 ⊕ K2 in accordance with the Theorem.
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Properties of Generalized Eigenspaces and the Proof of Theorem 3.5

A lot of work is required to justify our main result. Feel free to skip the proofs at first reading.

Lemma 3.7. Let λ be an eigenvalue of T ∈ L(V). Then:

1. Eλ is a subspace of Kλ, which is itself a subspace of V.

2. Kλ is T-invariant.

3. Suppose Kλ is finite-dimensional and µ ̸= λ. Then:

(a) Kλ is (T − µI)-invariant and the restriction of T − µI to Kλ is an isomorphism.

(b) If µ is another eigenvalue, then Kλ ∩ Kµ = {0}. In particular Kλ contains no eigenvectors
other than those in Eλ.

Proof. 1. These are an easy exercise.

2. Let x ∈ Kλ, then ∃k such that (T − λI)k(x) = 0. But then

(T − λI)k(T(x)) = (T − λI)k(T(x)− λx + λx
)

= (T − λI)k+1(x) + λ(T − λI)k(x) = 0

Otherwise said, T(x) ∈ Kλ.

3. (a) Let x ∈ Kλ. Part 2 tells us that

(T − µI)(x) = T(x)− µx ∈ Kλ

whence Kλ is (T − µI)-invariant.

Suppose, for a contradiction, that T − µI is not injective on Kλ. Then

∃y ∈ Kλ \ {0} such that (T − µI)(y) = 0

Let k ∈ N be minimal such that (T − λI)k(y) = 0 and let z = (T − λI)k−1(y). Plainly
z ̸= 0, for otherwise k is not minimal. Moreover,

(T − λI)(z) = (T − λI)k(y) = 0 =⇒ z ∈ Eλ

Since T − µI and T − λI commute, we can also compute the effect of T − µI;

(T − µI)(z) = (T − µI)(T − λI)k−1(y) = (T − λI)k−1(T − µI)(x) = 0

which says that z is an eigenvector in Eµ; if µ isn’t an eigenvalue, then we already have
our contradiction! Even if µ is an eigenvalue, Eµ ∩ Eλ = {0} provides the desired contra-
diction.

We conclude that (T − µI)Kλ
∈ L(Kλ) is injective. Since dim Kλ < ∞, the restriction is

automatically an isomorphism.

(b) This is another exercise.
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Now to prove Theorem 3.5: remember that the characteristic polynomial of T is assumed to split.

Proof. (Part 1(a)) Fix an eigenvalue λ. By definition, we have N (T − λI)m ≤ Kλ.

For the converse, parts 2 and 3 of the Lemma tell us (why?) that

pλ(t) = (λ − t)dim Kλ from which dim Kλ ≤ m (∗)

By the Cayley–Hamilton Theorem, TKλ
satisfies its characteristic polynomial, whence

∀x ∈ Kλ, (λI − T)dim Kλ (x) = 0 =⇒ Kλ ≤ N (T − λI)m

(Parts 1(b) and 2) We prove simultaneously by induction on the number of distinct eigenvalues of T.

(Base case) If T has only one eigenvalue, then p(t) = (λ − t)m. Another appeal to Cayley–
Hamilton says (T − λI)m(x) = 0 for all x ∈ V. Thus V = Kλ and dim Kλ = m.

(Induction step) Fix k and suppose the results hold for maps with k distinct eigenvalues. Let T
have distinct eigenvalues λ1, . . . , λk, µ, with multiplicities m1, . . . , mk, m respectively. Define1

W = R(T − µI)m

The subspace W has the following properties, the first two of which we leave as exercises:

• W is T-invariant.
• W ∩ Kµ = {0} so that µ is not an eigenvalue of the restriction TW .
• Each Kλj ≤ W: since (T − µI)Kλj

is an isomorphism (Lemma part 3), we can invert,

x ∈ Kλj =⇒ x = (T − µI)m
(
(T − µI)−1

Kλj

)m
(x) ∈ R(T − µI)m = W

We conclude that λj is an eigenvalue of the restriction TW with generalized eigenspace Kλj .

Since TW has k distinct eigenvalues, the induction hypotheses apply:

W = Kλ1 ⊕ · · · ⊕ Kλk and pW(t) = (λ1 − t)dim Kλ1 · · · (λk − t)dim Kλk

Since W ∩ Kµ = {0} it is enough finally to use the rank–nullity theorem and count dimensions:

dim V = rank(T − µI)m + null(T − µI)m = dim W + dim Kµ =
k

∑
j=1

dim Kλj + dim Kµ

(∗)
≤ m1 + · · ·+ mk + m = deg(p(t)) = dim V

The inequality is thus an equality; each dim Kλj = mj and dim Kµ = m. We conclude that

V = Kλ1 ⊕ · · · ⊕ Kλk ⊕ Kµ

which completes the induction step and thus the proof. Whew!

1This is yet another argument where we consider a suitable subspace to which we can apply an induction hypothesis;
recall the spectral theorem, Schur’s lemma, bilinear form diagonalization, etc. Theorem 3.12 will provide one more!
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Cycles of Generalized Eigenvectors

By Theorem 3.5, for every linear map whose characteristic polynomial splits there exists generalized
eigenbasis. This isn’t the same as a Jordan canonical basis, but we’re very close!

Example 3.8. The matrix A =
(

5 1 0
0 5 1
0 0 5

)
∈ M3(R) is a single Jordan block, whence there is a single

generalized eigenspace K5 = R3 and the standard basis ϵ = {e1, e2, e3} is Jordan canonical.
The crucial observation for what follows is that one of these vectors e3 generates the others via re-
peated applications of A − 5I:

e2 = (A − 5I)e3, e1 = (A − 5I)e2 = (A − 5I)2e3

Definition 3.9. A cycle of generalized eigenvectors for a linear operator T is a set

βx :=
{
(T − λI)k−1(x), . . . , (T − λI)(x), x

}
where the generator x ∈ Kλ is non-zero and k is minimal such that (T − λI)k(x) = 0.

Note that the first element (T − λI)k−1(x) is an eigenvector.
Our goal is to show that Kλ has a basis consisting of cycles of generalized eigenvectors; putting these
together results in a Jordan canonical basis.

Lemma 3.10. Let βx be a cycle of generalized eigenvectors of T with length k. Then:

1. βx is linearly independent and thus a basis of Span βx.

2. Span βx is T-invariant. With respect to βx, the matrix of the restriction of T is the k × k Jordan

block [TSpan βx ]βx =

(
λ 1

λ
. . .. . . 1

λ

)
.

In what follows, it will be useful to consider the linear map U = T − λI. Note the following:

• The nullspace of U is the eigenspace: N (U) = Eλ ≤ Kλ.

• T commutes with U: that is TU = UT.

• βx = {Uk−1(x), . . . , U(x), x}; that is, Span βx = ⟨x⟩ is the U-cyclic subspace generated by x.

Proof. 1. Feed the linear combination ∑k−1
j=0 ajUj(x) = 0 to Uk−1 to obtain

a0Uk−1(x) = 0 =⇒ a0 = 0

Now feed the same combination to Uk−2, etc., to see that all coefficients aj = 0.

2. Since T and U commute, we see that

T
(
Uj(x)

)
= Uj(T(x)) = Uj((U + λI)(x)

)
= Uj+1(x) + λUj(x) ∈ Span βx

This justifies both T-invariance and the Jordan block claim!
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The basic approach to finding a Jordan canonical basis is to find the generalized eigenspaces and play
with cycles until you find a basis for each Kλ. Many choices of canonical basis exist for a given map!
We’ll consider a more systematic method in the next section.

Examples 3.11. 1. The characteristic polynomial of A =
( 1 0 2

0 1 6
6 −2 1

)
∈ M3(R) splits:

p(t) = (1 − t)
∣∣∣∣1 − t 6
−2 1 − t

∣∣∣∣+ 2
∣∣∣∣0 1 − t
6 −2

∣∣∣∣ = (1 − t)
(
(1 − t)2 + 12 − 12

)
= (1 − t)3

With only one eigenvalue we see that K1 = R3. Simply choose any vector in R3 and see what
U = A − I does to it! For instance, with x = e1,

βx =
{

U2
(

1
0
0

)
, U
(

1
0
0

)
,
(

1
0
0

)}
=
{(

12
36
0

)
,
(

0
0
6

)
,
(

1
0
0

)}
provides a Jordan canonical basis of R3. We conclude

A = QJQ−1 =
(

12 0 1
36 0 0
0 6 0

) ( 1 1 0
0 1 1
0 0 1

) (
12 0 1
36 0 0
0 6 0

)−1

In practice, almost any choice of x ∈ R3 will generate a cycle of length three!

2. The matrix B =
( 7 1 −4

0 3 0
8 1 −5

)
∈ M3(R) has characteristic equation

p(t) = (3 − t)(t2 − 2t − 3) = −(t + 1)1(t − 3)2

dim K−1 = 1 =⇒ K−1 = E−1 = Span
(

1
0
2

)
, spanned by a cycle of length one.

Since dim K3 = 2, we have

K3 = N (B − 3I)2 = N
( 4 1 −4

0 0 0
8 1 −8

)2
= N

( −16 0 16
0 0 0

−32 0 32

)
= Span

{(
1
0
1

)
,
( 0

1
0

)}
This is spanned by a cycle of length two:

(
1
0
1

)
is an eigenvector and(

1
0
1

)
= (B − 3I)

( 0
1
0

)
We conclude that β =

{(
1
0
2

)
,
(

1
0
1

)
,
( 0

1
0

)}
is a Jordan canonical basis for B, and that

B = QJQ−1 =
( 1 1 0

0 0 1
2 1 0

) ( −1 0 0
0 3 1
0 0 3

) ( 1 1 0
0 0 1
2 1 0

)−1

3. Let T = d
dx on P3(R). With respect to the standard basis ϵ = {1, x, x2, x3},

A = [T]ϵ =
( 0 1 0 0

0 0 2 0
0 0 0 3
0 0 0 0

)
With only one eigenvalue λ = 0, we have a single generalized eigenspace K0 = P3(R). It is
easy to check that f (x) = x3 generates a cycle of length three and thus a Jordan canonical basis:

β = {6, 6x, 3x2, x3} =⇒ [T]β =

( 0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

)
=

( 6 0 0 0
0 6 0 0
0 0 3 0
0 0 0 1

)−1 ( 0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

)( 6 0 0 0
0 6 0 0
0 0 3 0
0 0 0 1

)
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Our final results state that this process works generally.

Theorem 3.12. Let T ∈ L(V) have an eigenvalue λ. If dim Kλ < ∞, then there exists a basis
βλ = βx1 ∪ · · · ∪ βxn of Kλ consisting of finitely many linearly independent cycles.

Intuition suggests that we create cycles βxj by starting with a basis of the eigenspace Eλ and extending
backwards: for each x, if x = (T− λI)(y), then x ∈ βy; now repeat until you have a maximum length
cycle. This is essentially what we do, though a sneaky induction is required to make sure we keep
track of everything and guarantee that the result really is a basis of Kλ.

Proof. We prove by induction on m = dim Kλ.
(Base case) If m = 1, then Kλ = Eλ = Span x for some eigenvector x. Plainly {x} = βx.
(Induction step) Fix m ≥ 2. Write n = dim Eλ ≤ m and U = (T − λI)Kλ

.

(i) For the induction hypothesis, suppose every generalized eigenspace with dimension < m (for
any linear map!) has a basis consisting of independent cycles of generalized eigenvectors.

(ii) Define W = R(U) ∩ Eλ: that is

w ∈ W ⇐⇒
{

U(w) = 0 and
w = U(v) for some v ∈ Kλ

Let k = dim W, choose a complementary subspace X such that Eλ = W ⊕ X and select a basis
{xk+1, . . . , xn} of X. If k = 0, the induction step is finished (why?). Otherwise we continue. . .

(iii) The calculation in the proof of Lemma 3.10 (take j = 1) shows that R(U) is T-invariant; it is
therefore the single generalized eigenspace K̃λ of TR(U).

(iv) By the rank–nullity theorem,

dimR(U) = rank U = dim Kλ − null U = m − dim Eλ < m

By the induction hypothesis, R(U) has a basis of independent cycles. Since the last non-zero
element in each cycle is an eigenvector, this basis consists of k distinct cycles βx̂1 ∪ · · · ∪ βx̂k

whose terminal vectors form a basis of W.

(v) Since each x̂j ∈ R(U), there exist vectors x1, . . . , xk such that x̂j = U(xj). Including the length-
one cycles generated by the basis of X, the cycles βx1 , . . . , βxn now contain

dimR(U) + k + (n − k) = rank U + null U = m

vectors. We leave as an exercise the verification that these vectors are linearly independent.

Corollary 3.13. Suppose that the characteristic polynomial of T ∈ L(V) splits (necessarily dim V <
∞). Then there exists a Jordan canonical basis, namely the union of bases βλ from Theorem 3.12.

Proof. By Theorem 3.5, V is the direct sum of generalized eigenspaces. By the previous result, each
Kλ has a basis βλ consisting of finitely many cycles. By Lemma 3.10, the matrix of TKλ

has Jordan
canonical form with respect to βλ. It follows that β =

⋃
βλ is a Jordan canonical basis for T.
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Exercises 3.1 1. For each matrix, find the generalized eigenspaces Kλ, find bases consisting of
unions of disjoint cycles of generalized eigenvectors, and thus find a Jordan canonical form J
and invertible Q so that the matrix may be expressed as QJQ−1.

(a) A =

(
1 1
−1 3

)
(b) B =

(
1 2
3 2

)
(c) C =

11 −4 −5
21 −8 −11
3 −1 0



(d) D =


2 1 0 0
0 2 1 0
0 0 3 0
0 1 −1 3


2. If β = {v1, . . . , vn} is a Jordan canonical basis, what can you say about v1? Briefly explain why

the linear map LA ∈ L(R2) where A =
(

0 −1
1 0

)
has no Jordan canonical form.

3. Find a Jordan canonical basis for each linear map T:

(a) T ∈ L(P2(R)) defined by T( f (x)) = 2 f (x)− f ′(x)

(b) T( f ) = f ′ defined on Span{1, t, t2, et, tet}
(c) T(A) = 2A + AT defined on M2(R)

4. In Example 3.11.1, suppose x =
( a

b
c

)
. Show that almost any choice of a, b, c produces a Jordan

canonical basis βx.

5. We complete the proof of Lemma 3.7.

(a) Prove part 1: that Eλ ≤ Kλ ≤ V.

(b) Verify that T − µI and T − λI commute.

(c) Prove part 3(b): generalized eigenspaces for distinct eigenvalues have trivial intersection.

6. Consider the induction step in the proof of Theorem 3.5.

(a) Prove that W is T-invariant.

(b) Explain why W ∩ Kµ = {0}.

(c) The assumption pW(t) = (λ1 − t)dim Kλ1 · · · (λk − t)dim Kλk near the end of the proof is the
induction hypothesis for part 1(b). Why can’t we also assume that dim Kλj = mj and thus
tidy the inequality argument near the end of the proof?

7. We finish some of the details of Theorem 3.12.

(a) In step (ii), suppose dim W = k = 0. Explain why {x1, . . . , xn} is in fact a basis of Kλ, so
that the rest of the proof is unnecessary.

(b) In step (v), prove that the m vectors in the cycles βx1 , . . . , βxn are linearly independent.

(Hint: model your argument on part 1 of Lemma 3.10)
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3.2 Cycle Patterns and the Dot Diagram

In this section we obtain a useful result that helps us compute Jordan forms more efficiently and
systematically. To give us some clues how to proceed, here is a lengthy example.

Example 3.14. Precisely three Jordan canonical forms A, B, C ∈ M3(R) correspond to the charac-
teristic polynomial p(t) = (5 − t)3:

A =

5 0 0
0 5 0
0 0 5

 B =

5 1 0
0 5 0
0 0 5

 C =

5 1 0
0 5 1
0 0 5


In all three cases the standard basis β = {e1, e2, e3} is Jordan canonical, so how do we distinguish
things? By considering the number and lengths of the cycles of generalized eigenvectors.

• A has eigenspace E5 = K5 = R3. Since (A − 5I)v = 0 for all v ∈ R3, we have maximum
cycle-length one. We therefore need three distinct cycles to construct a Jordan basis, e.g.

βe1 = {e1}, βe2 = {e2}, βe3 = {e3} =⇒ β = βe1 ∪ βe2 ∪ βe3 = {e1, e2, e3}

• B has eigenspace E5 = Span{e1, e3}. By computing

v =

a
b
c

 =⇒ (B − 5I)v =

b
0
0

 =⇒ (B − 5I)2v = 0

we see that βv is a cycle with maximum length two, provided b ̸= 0 (v ̸∈ E5). We therefore
need two distinct cycles, of lengths two and one, to construct a Jordan basis, e.g.

βe2 =
{
(B − 5I)e2, e2

}
= {e1, e2}, βe3 = {e3} =⇒ β = βe2 ∪ βe3 = {e1, e2, e3}

• C has eigenspace E5 = Span e1. This time

v =

a
b
c

 =⇒ (C − 5I)v =

b
c
0

 , (C − 5I)2v =

c
0
0

 , (C − 5I)3v = 0

generates a cycle with maximum length two provided c ̸= 0. Indeed this cycle is a Jordan basis,
so one cycle is all we need:

β = βe3 =
{
(C − 5I)2e3, (C − 5I)e3, e3

}
= {e1, e2, e3}

Why is the example relevant? Suppose that dimR V = 3 and that T ∈ L(V) has characteristic polyno-
mial p(t) = (5− t)3. Theorem 3.12 tells us that T has a Jordan canonical form, and that is is moreover
one of the above matrices A, B, C. Our goal is to develop a method whereby the pattern of cycle-
lengths can be determined, thus allowing us to be able to discern which Jordan form is correct. As a
side-effect, this will also demonstrate that the pattern of cycle lengths for a given T is independent of
the Jordan basis so that, up to some reasonable restriction, the Jordan form of T is unique. To aid us
in this endeavor, we require some terminology. . .
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Definition 3.15. Let V be finite dimensional and Kλ a generalized eigenspace of T ∈ L(V). Follow-
ing the Theorem 3.12, assume that βλ = βx1 ∪ · · · ∪ βxn is a Jordan canonical basis of TKλ

, where the
cycles are arranged in non-increasing length. That is:

1. βxj = {(T − λI)k j−1(xj), . . . , xj} has length k j, and

2. k1 ≥ k2 ≥ · · · ≥ kn

The dot diagram of TKλ
is a representation of the elements of βλ, one dot for each vector: the jth column

represents the elements of βxj arranged vertically with xj at the bottom.

Given a linear map, our eventual goal is to identify the dot diagram as an intermediate step in the
computation of a Jordan basis. First, however, we observe how the conversion of dot diagrams to a
Jordan form is essentially trivial.

Example 3.16. Suppose dim V = 14 and that T ∈ L(V) has the following eigenvalues and dot
diagrams:

λ1 = −4 λ2 = 7 λ3 = 12
• • • •
• •

• •
• •
•

• • •

Then generalized eigenspaces of T satisfy:

• K−4 = N (T + 4I)2 and dim K−4 = 6;

• K7 = N (T − 7I)3 and dim K7 = 5;

• K12 = N (T − 12I) = E12 and dim K12 = 3;

T has a Jordan canonical basis β with respect to which its Jordan canonical form is

[T]β =



−4 1
0 −4

−4 1
0 −4

−4
−4

7 1 0
0 7 1
0 0 7

7 1
0 7

12
12

12


Note how the sizes of the Jordan blocks are non-increasing within each eigenvalue. For instance, for
λ1 = −4, the sequence of cycle lengths (k j) is 2 ≥ 2 ≥ 1 ≥ 1.
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Theorem 3.17. Suppose βλ is a Jordan canonical basis of TKλ
as described in Definition 3.15, and

suppose the ith row of the dot diagram has ri entries. Then:

1. For each r ∈ N, the vectors associated to the dots in the first r rows form a basis of N (T − λI)r.

2. r1 = null(T − λI) = dim V − rank(T − λI)

3. When i > 1, ri = null(T − λI)i − null(T − λI)i−1 = rank(T − λI)i−1 − rank(T − λI)i

Example (3.14 cont). We describe the dot diagrams of the three matrices A, B, C, along with the
corresponding vectors in the Jordan canonical basis β and the values ri.

A : • • • x1 x2 x3 e1 e2 e3

Since A − 5I is the zero matrix, r1 = 3 − rank(A − 5I) = 3. The dot diagram has one row,
corresponding to three independent cycles of length one: β = βe1 ∪ βe2 ∪ βe3 .

B : • •
•

(B − 5I)x1 x2
x1

e1 e3
e2

Row 1: B − 5I =
(

0 1 0
0 0 0
0 0 0

)
=⇒ rank(B − 5I) = 1 and r1 = 3 − 1 = 2. The first row {e1, e3} is

a basis of E5 = N (B − 5I).

Row 2: (B − 5I)2 is the zero matrix, whence r2 = rank(B − 5I)− rank(B − 5I)2 = 1 − 0 = 1.

The dot diagram corresponds to β = βe2 ∪ βe3 = {e1, e2} ∪ {e3}.

C : •
•
•

(C − 5I)2x1
(C − 5I)x1

x1

e1
e2
e3

Row 1: C − 5I =
(

0 1 0
0 0 1
0 0 0

)
=⇒ r1 = 3 − rank(C − 5I) = 1. The first row {e1} is a basis of

E5 = N (C − 5I).

Row 2: (C − 5I)2 =
(

0 0 1
0 0 0
0 0 0

)
=⇒ r2 = rank(C − 5I)− rank(C − 5I)2 = 2 − 1 = 1. The first

two rows {e1, e2} form a basis of N (C − 5I)2.

Row 3: (C − 5I)3 is the zero matrix, whence r3 = rank(C − 5I)2 − rank(C − 5I)3 = 1− 0 = 1.

Proof. As previously, let U = T − λI.

1. Since each dot represents a basis vector Up(vj), any v ∈ Kλ may be written uniquely as a linear
combination of the dots. Applying U simply moves all the dots up a row and all dots in the top
row to 0. It follows that v ∈ N (Ur) ⇐⇒ it lies in the span of the first r rows. Since the dots
are linearly independent, they form a basis.

2. By part 1, r1 = dimN (U) = null(T − λI) = dim V − rank(T − λI).

3. More generally,

ri = (r1 + · · ·+ ri)− (r1 + · · ·+ ri−1) = dimN (Ui)− dimN (Ui−1)

= null(Ui)− null(Ui−1) = rank(T − λI)i−1 − rank(T − λI)i

12



Since the ranks of maps (T − λI)i are independent of basis, so also is the dot diagram. . .

Corollary 3.18. For any eigenvalue λ, the dot diagram is uniquely determined by T and λ. If we
list Jordan blocks for each eigenspace in non-increasing order, then the Jordan form of a linear map
is unique up to the order of the eigenvalues.

We now have a slightly more systematic method for finding Jordan canonical bases.

Example 3.19. The matrix A =

( 6 2 −4 −6
0 3 0 0
0 0 3 0
2 1 −2 −1

)
has characteristic equation

p(t) = (3 − t)2
∣∣∣∣6 − t −6

2 −1 − t

∣∣∣∣ = (2 − t)(3 − t)3

We have two generalized eigenspaces:

• K2 = E2 = N (A − 2I) = N
( 4 2 −4 −6

0 1 0 0
0 0 1 0
2 1 −2 −3

)
= Span

( 3
0
0
2

)
. The trivial dot diagram • corresponds

to this single eigenvector.

• K3 = N (A − 3I)3. To find the dot diagram, compute powers of A − 3I:

Row 1: A − 3I =
( 3 2 −4 −6

0 0 0 0
0 0 0 0
2 1 −2 −4

)
has rank 2 and the first row has r1 = 4 − 2 = 2 entries.

Row 2: (A − 3I)2 =

( −3 0 0 6
0 0 0 0
0 0 0 0
−2 0 0 4

)
has rank 1 and the second row has r2 = 2 − 1 = 1 entry.

Since we now have three dots (equalling dim K3), the algorithm terminates and the dot diagram
for K3 is • •

•
For the single dot in the second row, we choose something in N (A − 3I)2 which isn’t an eigen-
vector; perhaps the simplest choice is x1 = e2, which yields the two-cycle

βx1 = {(A − 3I)x1, x1} =

{( 2
0
0
1

)
,
( 0

1
0
0

)}

To complete the first row, choose any eigenvector to complete the span: for instance x2 =

( 0
2
1
0

)
.

We now have suitable cycles and a Jordan canonical basis/form:

β =

{( 3
0
0
2

)
,
( 2

0
0
1

)
,
( 0

1
0
0

)
,
( 0

2
1
0

)}
, A = QJQ−1 =

( 3 2 0 0
0 0 1 2
0 0 0 1
2 1 0 0

)( 2 0 0 0
0 3 1 0
0 0 3 0
0 0 0 3

)( 3 2 0 0
0 0 1 2
0 0 0 1
2 1 0 0

)−1

Other choices are available! For instance, if we’d chosen the two-cycle generated by x1 = e3, we’d
obtain a different Jordan basis but the same canonical form J:

β̃ =

{( 3
0
0
2

)
,
( −4

0
0
−2

)
,
( 0

0
1
0

)
,
( 0

2
1
0

)}
, A =

( 3 −4 0 0
0 0 0 2
0 0 1 1
2 −2 0 0

)( 2 0 0 0
0 3 1 0
0 0 3 0
0 0 0 3

)( 3 −4 0 0
0 0 0 2
0 0 1 1
2 −2 0 0

)−1
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We do one final example for a non-matrix map.

Example 3.20. Let ϵ = {1, x, y, x2, y2, xy} and define T
(

f (x, y)
)
= 2 ∂ f

∂x − ∂ f
∂y as a linear operator on

V = SpanR ϵ. The matrix and characteristic polynomial of T is easy to compute:

[T]ϵ =

 0 2 −1 0 0 0
0 0 0 4 0 −1
0 0 0 0 −2 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 =⇒ p(t) = t6, [T2]ϵ =

 0 0 0 8 2 −4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , [T3]ϵ = O

There is only one eigenvalue λ = 0 and therefore one generalized eigenspace K0 = V. We could keep
working with matrices, but it is easy to translate the nullspaces of the matrices back to subspaces of
V, from which the necessary data can be read off:

N (T) = Span{1, x + 2y, x2 + 4y2 + 4xy} null T = 3, rank T = 3, r1 = 3

N (T2) = Span{1, x, y, x2 + 2xy, 2y2 + xy} null T2 = 5, rank T2 = 1, r2 = 3 − 1 = 2

We now have five dots; since dim K0 = 6, the last row has one, and the dot diagram is • • •
• •
•

Since the first two rows span N (T2), we may choose any f1 ̸∈ N (T2) for the final dot: f1 = xy is
suitable, from which the first column of the dot diagram becomes

T2(xy) • •
T(xy) •

xy

−4 • •
2y − x •

xy

Now choose the second dot on the second row to be anything in N (T2) such that the first two rows
span N (T2): this time f2 = x2 − 4y2 is suitable, and the diagram becomes:

T2(xy) T(x2 − 4y2) •
T(xy) x2 − 4y2

xy

−4 4x + 8y •
2y − x x2 − 4y2

xy

The final dot is now chosen so that the first row spans N (T): this time f3 = x2 + 4y2 + 4xy works.
The result is a Jordan canonical basis and form for T

β =
{
−4, 2y − x, xy, 4x + 8y, x2 − 4y2, x2 + 4y2 + 4xy

}
, J = [T]β =



0 1 0
0 0 1
0 0 0

0 1
0 0

0


As previously, many other choices of cycle-generators f1, f2, f3 are available; while these result in
different Jordan canonical bases, Corollary 3.18 assures us that we’ll always obtain the same canonical
form J.
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Exercises 3.2 1. Let T be a linear operator whose characteristic polynomial splits. Suppose the
eigenvalues and the dot diagrams for the generalized eigenspaces Kλi are as follows:

λ1 = 2 λ2 = 4 λ3 = −3
• • •
• •
•

• •
•
•

• •

Find the Jordan form J of T.

2. Suppose T has Jordan canonical form

J =



2 1 0
0 2 1
0 0 2

2 1
0 2

3
3


(a) Find the characteristic polynomial of T.

(b) Find the dot diagram for each eigenvalue.

(c) For each eigenvalue find the smallest k j such that Kλj = N (T − λjI)k j .

3. For each matrix A find a Jordan canonical form and an invertible Q such that A = QJQ−1.

(a) A =

−3 3 −2
−7 6 −3
1 −1 2

 (b) A =

 0 1 −1
−4 4 −2
−2 1 1

 (c) A =


0 −3 1 2
−2 1 −1 2
−2 1 −1 2
−2 −3 1 4


4. For each linear operator T, find a Jordan canonical form J and basis β:

(a) T( f ) = f ′ on SpanR{et, tet, t2et, e2t}
(b) T

(
f (x)

)
= x f ′′(x) on P3(R)

(c) T( f ) = a fx + b fy on SpanR{1, x, y, x2, y2, xy}. How does your answer depend on a, b?

5. (Generalized Eigenvector Method for ODEs) Let A ∈ Mn(R) have an eigenvalue λ and sup-
pose βv0 = {vk−1, . . . , v1, v0} is a cycle of generalized eigenvectors for this eigenvalue. Show
that

x(t) := eλt
k−1

∑
j=0

bj(t)vj satisfies x′(t) = Ax ⇐⇒
{

b′0(t) = 0, and
b′j(t) = bj−1(t) when j ≥ 1

Use this method to solve the system of differential equations

x′ =


3 1 0 0
0 3 1 0
0 0 3 0
0 0 0 2

 x
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3.3 The Rational Canonical Form (non-examinable)

We finish the course with a very quick discussion of what can be done when the characteristic poly-
nomial of a linear map does not split. In such a situation, we may assume that

p(t) = (−1)n(ϕ1(t)
)m1 · · ·

(
ϕk(t)

)mk (∗)

where each ϕj(t) is an irreducible monic polynomial over the field.

Example 3.21. The following matrix has characteristic equation p(t) = (t2 + 1)2(3 − t)

A =

( 0 −1 0 0 0
1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 3

)
∈ M5(R)

This doesn’t split over R since t2 + 1 = 0 has no real roots. It is, however, diagonalizable over C.

A couple of basic facts from algebra:

• Every polynomial splits over C: every A ∈ Mn(C) therefore has a Jordan form.

• Every polynomial over R factorizes into linear or irreducible quadratic factors.

The question is how to deal with non-linear irreducible factors in the characteristic polynomial.

Definition 3.22. The monic polynomial tk + ak−1tk−1 + · · ·+ a0 has companion matrix

0 0 0 · · · 0 −a0
1 0 0 0 −a1
0 1 0 0 −a2...

. . .
...

0 0 0 0 −ak−2
0 0 0 · · · 1 −ak−1


(when k = 1, this is the 1 × 1 matrix (−a0))

If T ∈ L(V) has characteristic polynomial (∗), then a rational canonical basis is a basis for which

[T]β =


C1 O · · · O
O C2 O
...

. . .
...

O O · · · Cr


where each Cj is a companion matrix of some (ϕj(t))sj where sj ≤ mj. We call [T]β a rational canonical
form of T.

We state the main result without proof:

Theorem 3.23. A rational canonical basis exists for any linear operator T on a finite-dimensional
vector space V. The canonical form is unique up to ordering of companion matrices.

Example (3.21 cont). The matrix A is already in rational canonical form: the standard basis is rational
canonical with three companion blocks,

C1 = C2 =
(

0 −1
1 0

)
, C3 = (3)
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Example 3.24. Let A =
(

4 −3
2 2

)
∈ M2(R). Its characteristic polynomial

p(t) = t2 − 6t + 14 = (t − 3)2 + 5

doesn’t split over R and so it has no eigenvalues. Instead simply pick a vector, x =
(

1
0

)
(say), define

y = Ax =
(

4
2

)
, let β = {x, y} and observe that

[LA]β =

(
0 −14
1 6

)
is a rational canonical form. Indeed this works for any x ̸= 0: if β := {x, Ax}, then Cayley–Hamilton
forces

A2x = (6A − 14I)x = −14x + 6Ax =⇒ [LA]β =

(
0 −14
1 6

)
whence β is a rational canonical basis and the form [LA]β is independent of x!

A systematic approach to finding rational canonical forms is similar to that for Jordan forms: for each
irreducible divisor of p(t), the subspace Kϕ = N

(
ϕ(T)

)m plays a role analogous to a generalized
eigenspace; indeed Kλ = Kϕ for the linear irreducible factor ϕ(t) = λ − t!
We finish with two examples; hopefully the approach is intuitive, even without theoretical justifica-
tion.

Examples 3.25. If the characteristic polynomial of T ∈ L(R4) is

p(t) = (ϕ(t))2 = (t2 − 2t + 3)2 = t4 − 4t3 + 10t2 − 12t + 9

then there are two possible rational canonical forms; here is an example of each.

1. If A =

(
0 −15 0 −9
2 2 −3 0
0 −9 0 −6
−3 0 5 2

)
, then ϕ(A) = O is the zero matrix, whence N (ϕ(A)) = R4. Since ϕ(t)

isn’t the full characteristic polynomial, we expect there to be two independent cycles of length
two in the canonical basis. Start with something simple as a guess:

x1 =

( 1
0
0
0

)
=⇒ x2 = Ax1 =

( 0
2
0
−3

)
=⇒ Ax2 =

( −3
4
0
−6

)
= −3x1 + 2x2

Now make another choice that isn’t in the span of {x1, x2}:

x3 =

( 0
0
1
0

)
=⇒ x4 = Ax3 =

( 0
−3
0
5

)
=⇒ Ax4 =

( 0
−6
−3
10

)
= −3x3 + 2x4

We therefore have a rational canonical basis β = {x1, x2, x3, x4} and

A =

( 1 0 0 0
0 2 0 −3
0 0 1 0
0 −3 0 5

)( 0 −3 0 0
1 2 0 0
0 0 0 −3
0 0 1 2

)( 1 0 0 0
0 2 0 −3
0 0 1 0
0 −3 0 5

)−1

Over C, this example is diagonalizable. Indeed each of the 2 × 2 companion matrices is diago-
nalizable over C.
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2. Let B =

( 0 0 2 1
1 1 −1 −1
0 1 −2 −16
0 0 1 5

)
. This time

ϕ(B) = B2 − 2B + 3I =

(
3 2 −7 −29
−1 1 4 13
1 −3 −6 −17
0 1 1 2

)
=⇒ N (ϕ(B)) = Span

{( 3
−1
1
0

)
,
( 11

−2
0
1

)}
Anything not in this span will suffice as a generator for a single cycle of length four: e.g.,

x1 =

( 1
0
0
0

)
, x2 = Bx1 =

( 0
1
0
0

)
, x3 = Bx2 =

( 0
1
1
0

)
, x4 = Bx3 =

( 2
0
−1
1

)
Bx4 =

( −1
2

−14
4

)
= −9

( 1
0
0
0

)
+ 12

( 0
1
0
0

)
− 10

( 0
1
1
0

)
+ 4

( 2
0
−1
1

)
We therefore have a rational canonical basis β = {x1, x2, x3, x4} and

B =

( 1 0 0 2
0 1 1 0
0 0 1 −1
0 0 0 1

)( 0 0 0 −9
1 0 0 12
0 1 0 −10
0 0 1 4

)( 1 0 0 2
0 1 1 0
0 0 1 −1
0 0 0 1

)−1

In contrast to the first example, B isn’t diagonalizable over C. It has Jordan form J =

(
λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ

)
where λ = 1 + i

√
2.
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