3 Canonical Forms

3.1 Jordan Forms \& Generalized Eigenvectors

Throughout this course we've concerned ourselves with variations of a general question: for a given map $\mathrm{T} \in \mathcal{L}(V)$, find a basis β such that the matrix $[\mathrm{T}]_{\beta}$ is as close to diagonal as possible. In this chapter we see what is possible when T is non-diagonalizable.

Example 3.1. The matrix $A=\left(\begin{array}{cc}-8 & 4 \\ -25 & 12\end{array}\right) \in M_{2}(\mathbb{R})$ has characteristic equation

$$
p(t)=(-8-t)(12-t)+4 \cdot 25=t^{2}-4 t+4=(t-2)^{2}
$$

and thus a single eigenvalue $\lambda=2$. It is non-diagonalizable since the eigenspace is one-dimensional

$$
E_{2}=\mathcal{N}\left(\begin{array}{cc}
-10 & 4 \\
-25 & 10
\end{array}\right)=\operatorname{Span}\binom{2}{5}
$$

However, if we consider a basis $\beta=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ where $\mathbf{v}_{1}=\binom{2}{5}$ is an eigenvector, then $\left[\mathrm{L}_{A}\right]_{\beta}$ is uppertriangular, which is better than nothing! How simple can we make this matrix? Let $\mathbf{v}_{2}=\binom{x}{y}$, then

$$
\begin{aligned}
& A \mathbf{v}_{2}=\binom{-8 x+4 y}{-25 x+12 y}=2\binom{x}{y}+\binom{-10 x+4 y}{-25 x+10 y}=2 \mathbf{v}_{2}+(-5 x+2 y) \mathbf{v}_{1} \\
& \\
& \Longrightarrow\left[\mathrm{~L}_{A}\right]_{\beta}=\left(\begin{array}{cc}
2 & -5 x+2 y \\
0 & 2
\end{array}\right)
\end{aligned}
$$

Since \mathbf{v}_{2} cannot be parallel to \mathbf{v}_{1}, the only thing we cannot have is a diagonal matrix. The next best thing is for the upper right corner be 1 ; for instance we could choose

$$
\beta=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{\binom{2}{5},\binom{1}{3}\right\} \Longrightarrow\left[\mathrm{L}_{A}\right]_{\beta}=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)
$$

Definition 3.2. A Jordan block is a square matrix of the form

$$
J=\left(\begin{array}{llll}
\lambda & 1 & & \\
& \lambda & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right)
$$

where all non-indicated entries are zero. Any 1×1 matrix is also a Jordan block.
A Jordan canonical form is a block-diagonal matrix $\operatorname{diag}\left(J_{1}, \ldots, J_{m}\right)$ where each J_{k} is a Jordan block. A Jordan canonical basis for $\mathrm{T} \in \mathcal{L}(V)$ is a basis β of V such that $[\mathrm{T}]_{\beta}$ is a Jordan canonical form.

If a map is diagonalizable, then any eigenbasis is Jordan canonical and the corresponding Jordan canonical form is diagonal. What about more generally? Does every non-diagonalizable map have a Jordan canonical basis? If so, how can we find such?

Example 3.3. It can easily be checked that $\beta=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ is a Jordan canonical basis for

$$
A=\left(\begin{array}{lll}
-1 & 2 & 3 \\
-4 & 5 & 4 \\
-2 & 1 & 4
\end{array}\right)
$$

(really $\mathrm{L}_{A} \in \mathcal{L}\left(\mathbb{R}^{3}\right)$). Indeed

$$
A \mathbf{v}_{1}=2 \mathbf{v}_{1}, \quad A \mathbf{v}_{2}=3 \mathbf{v}_{2}, \quad A \mathbf{v}_{3}=\left(\begin{array}{l}
4 \\
5 \\
3
\end{array}\right)=\left(\begin{array}{l}
1+3 \\
2+3 \\
0+3
\end{array}\right)=\mathbf{v}_{2}+3 \mathbf{v}_{3} \Longrightarrow\left[\mathrm{~L}_{A}\right]_{\beta}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

Generalized Eigenvectors

Example 3.3 was easy to check, but how would we go about finding a suitable β if we were merely given A ? We brute-forced this in Example 3.1, but such is not a reasonable approach in general. Eigenvectors get us some of the way:

- \mathbf{v}_{1} is an eigenvector in Example 3.1, but \mathbf{v}_{2} is not.
- \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors in Example 3.3, but \mathbf{v}_{3} is not.

The practical question is how to fill out a Jordan canonical basis once we have a maximal independent set of eigenvectors. We now define the necessary objects.

Definition 3.4. Suppose $\mathrm{T} \in \mathcal{L}(V)$ has an eigenvalue λ. Its generalized eigenspace is

$$
K_{\lambda}:=\left\{\mathbf{x} \in V:(\mathrm{T}-\lambda \mathrm{I})^{k}(\mathbf{x})=\mathbf{0} \text { for some } k \in \mathbb{N}\right\}=\bigcup_{k \in \mathbb{N}} \mathcal{N}(\mathrm{~T}-\lambda \mathrm{I})^{k}
$$

A generalized eigenvector is any non-zero $\mathbf{v} \in K_{\lambda}$.
As with eigenspaces, the generalized eigenspaces of $A \in M_{n}(\mathbb{F})$ are those of the map $L_{A} \in \mathcal{L}\left(\mathbb{F}^{n}\right)$.
It is easy to check that our earlier Jordan canonical bases consist of generalized eigenvectors.
Example 3.1. We have one eigenvalue $\lambda=2$. Since $(A-2 I)^{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is the zero matrix, every non-zero vector is a generalized eigenvector; plainly $K_{2}=\mathbb{R}^{2}$.

Example 3.3. We see that

$$
(A-2 I) \mathbf{v}_{1}=\mathbf{0}, \quad(A-3 I) \mathbf{v}_{2}=\mathbf{0}, \quad(A-3 I)^{2} \mathbf{v}_{3}=(A-3 I) \mathbf{v}_{2}=\mathbf{0}
$$

whence β is a basis of generalized eigenvectors. Indeed

$$
K_{3}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}, \quad K_{2}=E_{2}=\operatorname{Span}\left\{\mathbf{v}_{3}\right\}
$$

though verifying this with current technology is a little awkward...

In order to easily compute generalized eigenspaces, it is useful to invoke the main result of this section. We postpone the proof for a while due to its meatiness.

Theorem 3.5. Suppose that the characteristic polynomial of $\mathrm{T} \in \mathcal{L}(V)$ splits over \mathbb{F} :

$$
p(t)=\left(\lambda_{1}-t\right)^{m_{1}} \cdots\left(\lambda_{k}-t\right)^{m_{k}}
$$

where the λ_{j} are the distinct eigenvalues of T with algebraic multiplicities m_{j}. Then:

1. For each eigenvalue; (a) $K_{\lambda}=\mathcal{N}(T-\lambda I)^{m}$ and (b) $\operatorname{dim} K_{\lambda}=m$.
2. $V=K_{\lambda_{1}} \oplus \cdots \oplus K_{\lambda_{k}}$: there exists a basis of generalized eigenvectors.

Compare this with the statement on diagonalizability from the start of the course.
With regard to part 2; we shall eventually be able to choose this to be a Jordan canonical basis. In conclusion: a map has a Jordan canonical basis if and only if its characteristic polynomial splits.

Examples 3.6. 1. Observe how Example 3.3 works in this language:

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
-1 & 2 & 3 \\
-4 & 5 & 4 \\
-2 & 1 & 4
\end{array}\right) \Longrightarrow p(t)=(2-t)^{1}(3-t)^{2} \\
& K_{2}=\mathcal{N}(A-2 I)^{1}=\operatorname{Span}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \Longrightarrow \operatorname{dim} K_{2}=1 \\
& K_{3}=\mathcal{N}(A-3 I)^{2}=\mathcal{N}\left(\begin{array}{ccc}
2 & -1 & -1 \\
0 & 0 & 0 \\
2 & -1 & -1
\end{array}\right)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} \Longrightarrow \operatorname{dim} K_{3}=2 \\
& \mathbb{R}^{3}=K_{2} \oplus K_{3}
\end{aligned}
$$

2. We find the generalized eigenspaces of the matrix $A=\left(\begin{array}{ccc}5 & 2 & -1 \\ 0 & 0 & 0 \\ 9 & 6 & -1\end{array}\right)$

The characteristic polynomial is

$$
p(t)=\operatorname{det}(A-\lambda I)=-t\left|\begin{array}{cc}
5-t & -1 \\
9 & -1-t
\end{array}\right|=-t\left(t^{2}-5 t+t-5+9\right)=-(0-t)^{1}(2-t)^{2}
$$

- $\lambda=0$ has multiplicity 1 ; indeed $K_{0}=\mathcal{N}(A-0 I)^{1}=\mathcal{N}(A)=\operatorname{Span}\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$ is just the eigenspace E_{0}.
- $\lambda=2$ has multiplicity 2 ,

$$
K_{2}=\mathcal{N}(A-2 I)^{2}=\mathcal{N}\left(\begin{array}{ccc}
3 & 2 & -1 \\
0 & -2 & 0 \\
9 & 6 & -3
\end{array}\right)^{2}=\mathcal{N}\left(\begin{array}{ccc}
0 & -4 & 0 \\
0 & 4 & 0 \\
0 & -12 & 0
\end{array}\right)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

In this case the corresponding eigenspace is one-dimensional, $E_{2}=\operatorname{Span}\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right) \lesseqgtr K_{2}$, and the matrix is non-diagonalizable.
Observe also that $\mathbb{R}^{3}=K_{0} \oplus K_{2}$ in accordance with the Theorem.

Properties of Generalized Eigenspaces and the Proof of Theorem 3.5

A lot of work is required to justify our main result. Feel free to skip the proofs at first reading.
Lemma 3.7. Let λ be an eigenvalue of $\mathrm{T} \in \mathcal{L}(V)$. Then:

1. E_{λ} is a subspace of K_{λ}, which is itself a subspace of V.
2. K_{λ} is T -invariant.
3. Suppose K_{λ} is finite-dimensional and $\mu \neq \lambda$. Then:
(a) K_{λ} is $(\mathrm{T}-\mu \mathrm{I})$-invariant and the restriction of $\mathrm{T}-\mu \mathrm{I}$ to K_{λ} is an isomorphism.
(b) If μ is another eigenvalue, then $K_{\lambda} \cap K_{\mu}=\{\mathbf{0}\}$. In particular K_{λ} contains no eigenvectors other than those in E_{λ}.

Proof. 1. These are an easy exercise.
2. Let $\mathbf{x} \in K_{\lambda}$, then $\exists k$ such that $(\mathrm{T}-\lambda \mathrm{I})^{k}(\mathbf{x})=\mathbf{0}$. But then

$$
\begin{aligned}
(\mathrm{T}-\lambda \mathrm{I})^{k}(\mathrm{~T}(\mathbf{x})) & =(\mathrm{T}-\lambda \mathrm{I})^{k}(\mathrm{~T}(\mathbf{x})-\lambda \mathbf{x}+\lambda \mathbf{x}) \\
& =(\mathrm{T}-\lambda \mathrm{I})^{k+1}(\mathbf{x})+\lambda(\mathrm{T}-\lambda \mathrm{I})^{k}(\mathbf{x})=\mathbf{0}
\end{aligned}
$$

Otherwise said, $\mathrm{T}(\mathbf{x}) \in K_{\lambda}$.
3. (a) Let $\mathbf{x} \in K_{\lambda}$. Part 2 tells us that

$$
(\mathrm{T}-\mu \mathrm{I})(\mathbf{x})=\mathrm{T}(\mathbf{x})-\mu \mathbf{x} \in K_{\lambda}
$$

whence K_{λ} is $(T-\mu \mathrm{I})$-invariant.
Suppose, for a contradiction, that $\mathrm{T}-\mu \mathrm{I}$ is not injective on K_{λ}. Then

$$
\exists \mathbf{y} \in K_{\lambda} \backslash\{\mathbf{0}\} \text { such that }(\mathrm{T}-\mu \mathrm{I})(\mathbf{y})=\mathbf{0}
$$

Let $k \in \mathbb{N}$ be minimal such that $(\mathrm{T}-\lambda \mathrm{I})^{k}(\mathbf{y})=\mathbf{0}$ and let $\mathbf{z}=(\mathrm{T}-\lambda \mathrm{I})^{k-1}(\mathbf{y})$. Plainly $\mathbf{z} \neq \mathbf{0}$, for otherwise k is not minimal. Moreover,

$$
(\mathrm{T}-\lambda \mathrm{I})(\mathbf{z})=(\mathrm{T}-\lambda \mathrm{I})^{k}(\mathbf{y})=\mathbf{0} \Longrightarrow \mathbf{z} \in E_{\lambda}
$$

Since $\mathrm{T}-\mu \mathrm{I}$ and $\mathrm{T}-\lambda \mathrm{I}$ commute, we can also compute the effect of $\mathrm{T}-\mu \mathrm{I}$;

$$
(\mathrm{T}-\mu \mathrm{I})(\mathbf{z})=(\mathrm{T}-\mu \mathrm{I})(\mathrm{T}-\lambda \mathrm{I})^{k-1}(\mathbf{y})=(\mathrm{T}-\lambda \mathrm{I})^{k-1}(\mathrm{~T}-\mu \mathrm{I})(\mathbf{x})=\mathbf{0}
$$

which says that \mathbf{z} is an eigenvector in E_{μ}; if μ isn't an eigenvalue, then we already have our contradiction! Even if μ is an eigenvalue, $E_{\mu} \cap E_{\lambda}=\{0\}$ provides the desired contradiction.
We conclude that $(\mathrm{T}-\mu \mathrm{I})_{K_{\lambda}} \in \mathcal{L}\left(K_{\lambda}\right)$ is injective. Since $\operatorname{dim} K_{\lambda}<\infty$, the restriction is automatically an isomorphism.
(b) This is another exercise.

Now to prove Theorem 3.5. remember that the characteristic polynomial of T is assumed to split.
Proof. (Part 1(a)) Fix an eigenvalue λ. By definition, we have $\mathcal{N}(T-\lambda I)^{m} \leq K_{\lambda}$.
For the converse, parts 2 and 3 of the Lemma tell us (why?) that

$$
\begin{equation*}
p_{\lambda}(t)=(\lambda-t)^{\operatorname{dim} K_{\lambda}} \quad \text { from which } \quad \operatorname{dim} K_{\lambda} \leq m \tag{*}
\end{equation*}
$$

By the Cayley-Hamilton Theorem, $\mathrm{T}_{K_{\lambda}}$ satisfies its characteristic polynomial, whence

$$
\forall \mathbf{x} \in K_{\lambda},(\lambda \mathrm{I}-\mathrm{T})^{\operatorname{dim} K_{\lambda}}(\mathbf{x})=\mathbf{0} \Longrightarrow K_{\lambda} \leq \mathcal{N}(\mathrm{T}-\lambda \mathrm{I})^{m}
$$

(Parts 1(b) and 2) We prove simultaneously by induction on the number of distinct eigenvalues of T.
(Base case) If T has only one eigenvalue, then $p(t)=(\lambda-t)^{m}$. Another appeal to CayleyHamilton says $(\mathrm{T}-\lambda \mathrm{I})^{m}(\mathbf{x})=\mathbf{0}$ for all $\mathbf{x} \in V$. Thus $V=K_{\lambda}$ and $\operatorname{dim} K_{\lambda}=m$.
(Induction step) Fix k and suppose the results hold for maps with k distinct eigenvalues. Let T have distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}, \mu$, with multiplicities m_{1}, \ldots, m_{k}, m respectively. Define ${ }^{1}$

$$
W=\mathcal{R}(\mathrm{T}-\mu \mathrm{I})^{m}
$$

The subspace W has the following properties, the first two of which we leave as exercises:

- W is T-invariant.
- $W \cap K_{\mu}=\{\mathbf{0}\}$ so that μ is not an eigenvalue of the restriction T_{W}.
- Each $K_{\lambda_{j}} \leq W$: since $(\mathrm{T}-\mu \mathrm{I})_{K_{\lambda_{j}}}$ is an isomorphism (Lemma part 3), we can invert,

$$
\mathbf{x} \in K_{\lambda_{j}} \Longrightarrow \mathbf{x}=(\mathrm{T}-\mu \mathrm{I})^{m}\left((\mathrm{~T}-\mu \mathrm{I})_{K_{\lambda_{j}}}^{-1}\right)^{m}(\mathbf{x}) \in \mathcal{R}(\mathrm{T}-\mu \mathrm{I})^{m}=W
$$

We conclude that λ_{j} is an eigenvalue of the restriction T_{W} with generalized eigenspace $K_{\lambda_{j}}$.
Since T_{W} has k distinct eigenvalues, the induction hypotheses apply:

$$
W=K_{\lambda_{1}} \oplus \cdots \oplus K_{\lambda_{k}} \quad \text { and } \quad p_{W}(t)=\left(\lambda_{1}-t\right)^{\operatorname{dim} K_{\lambda_{1}} \cdots\left(\lambda_{k}-t\right)^{\operatorname{dim} K_{\lambda_{k}}} .}
$$

Since $W \cap K_{\mu}=\{0\}$ it is enough finally to use the rank-nullity theorem and count dimensions:

$$
\begin{aligned}
\operatorname{dim} V & =\operatorname{rank}(\mathrm{T}-\mu \mathrm{I})^{m}+\operatorname{null}(\mathrm{T}-\mu \mathrm{I})^{m}=\operatorname{dim} W+\operatorname{dim} K_{\mu}=\sum_{j=1}^{k} \operatorname{dim} K_{\lambda_{j}}+\operatorname{dim} K_{\mu} \\
& \stackrel{(*)}{\leq} m_{1}+\cdots+m_{k}+m=\operatorname{deg}(p(t))=\operatorname{dim} V
\end{aligned}
$$

The inequality is thus an equality; each $\operatorname{dim} K_{\lambda_{j}}=m_{j}$ and $\operatorname{dim} K_{\mu}=m$. We conclude that

$$
V=K_{\lambda_{1}} \oplus \cdots \oplus K_{\lambda_{k}} \oplus K_{\mu}
$$

which completes the induction step and thus the proof. Whew!

[^0]
Cycles of Generalized Eigenvectors

By Theorem 3.5, for every linear map whose characteristic polynomial splits there exists generalized eigenbasis. This isn't the same as a Jordan canonical basis, but we're very close!

Example 3.8. The matrix $A=\left(\begin{array}{lll}5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 1 & 5\end{array}\right) \in M_{3}(\mathbb{R})$ is a single Jordan block, whence there is a single generalized eigenspace $K_{5}=\mathbb{R}^{3}$ and the standard basis $\epsilon=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is Jordan canonical.
The crucial observation for what follows is that one of these vectors \mathbf{e}_{3} generates the others via repeated applications of $A-5 I$:

$$
\mathbf{e}_{2}=(A-5 I) \mathbf{e}_{3}, \quad \mathbf{e}_{1}=(A-5 I) \mathbf{e}_{2}=(A-5 I)^{2} \mathbf{e}_{3}
$$

Definition 3.9. A cycle of generalized eigenvectors for a linear operator T is a set

$$
\beta_{\mathbf{x}}:=\left\{(\mathrm{T}-\lambda \mathrm{I})^{k-1}(\mathbf{x}), \ldots,(\mathrm{T}-\lambda \mathrm{I})(\mathbf{x}), \mathbf{x}\right\}
$$

where the generator $\mathbf{x} \in K_{\lambda}$ is non-zero and k is minimal such that $(\mathrm{T}-\lambda \mathrm{I})^{k}(\mathbf{x})=\mathbf{0}$.
Note that the first element $(\mathrm{T}-\lambda \mathrm{I})^{k-1}(\mathbf{x})$ is an eigenvector.
Our goal is to show that K_{λ} has a basis consisting of cycles of generalized eigenvectors; putting these together results in a Jordan canonical basis.

Lemma 3.10. Let β_{x} be a cycle of generalized eigenvectors of T with length k. Then:

1. β_{x} is linearly independent and thus a basis of Span β_{x}.
2. Span β_{x} is T -invariant. With respect to β_{x}, the matrix of the restriction of T is the $k \times k$ Jordan block $\left[\mathrm{T}_{\text {Span } \beta_{\mathrm{x}}}\right]_{\beta_{\mathrm{x}}}=\left(\begin{array}{cccc}\lambda & 1 & & \\ & \lambda & \ddots & \\ & \ddots & \\ & & & \lambda \\ & \\ & & & \\ \hline\end{array}\right)$.

In what follows, it will be useful to consider the linear map $\mathrm{U}=\mathrm{T}-\lambda \mathrm{I}$. Note the following:

- The nullspace of U is the eigenspace: $\mathcal{N}(\mathrm{U})=E_{\lambda} \leq K_{\lambda}$.
- T commutes with U : that is $\mathrm{TU}=\mathrm{UT}$.
- $\beta_{\mathbf{x}}=\left\{\mathrm{U}^{k-1}(\mathbf{x}), \ldots, \mathrm{U}(\mathbf{x}), \mathbf{x}\right\}$; that is, Span $\beta_{\mathbf{x}}=\langle\mathbf{x}\rangle$ is the U-cyclic subspace generated by \mathbf{x}.

Proof. 1. Feed the linear combination $\sum_{j=0}^{k-1} a_{j} \mathrm{U}^{j}(\mathbf{x})=\mathbf{0}$ to U^{k-1} to obtain

$$
a_{0} \mathrm{U}^{k-1}(\mathbf{x})=\mathbf{0} \Longrightarrow a_{0}=0
$$

Now feed the same combination to U^{k-2}, etc., to see that all coefficients $a_{j}=0$.
2. Since T and U commute, we see that

$$
\mathrm{T}\left(\mathrm{U}^{j}(\mathbf{x})\right)=\mathrm{U}^{j}(\mathrm{~T}(\mathbf{x}))=\mathrm{U}^{j}((\mathrm{U}+\lambda \mathrm{I})(\mathbf{x}))=\mathrm{U}^{j+1}(\mathbf{x})+\lambda \mathrm{U}^{j}(\mathbf{x}) \in \operatorname{Span} \beta_{\mathbf{x}}
$$

This justifies both T-invariance and the Jordan block claim!

The basic approach to finding a Jordan canonical basis is to find the generalized eigenspaces and play with cycles until you find a basis for each K_{λ}. Many choices of canonical basis exist for a given map! We'll consider a more systematic method in the next section.

Examples 3.11. 1. The characteristic polynomial of $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & 6 \\ 6 & -2 & 1\end{array}\right) \in M_{3}(\mathbb{R})$ splits:

$$
p(t)=(1-t)\left|\begin{array}{cc}
1-t & 6 \\
-2 & 1-t
\end{array}\right|+2\left|\begin{array}{cc}
0 & 1-t \\
6 & -2
\end{array}\right|=(1-t)\left((1-t)^{2}+12-12\right)=(1-t)^{3}
$$

With only one eigenvalue we see that $K_{1}=\mathbb{R}^{3}$. Simply choose any vector in \mathbb{R}^{3} and see what $U=A-I$ does to it! For instance, with $\mathbf{x}=\mathbf{e}_{1}$,

$$
\beta_{\mathrm{x}}=\left\{\mathrm{U}^{2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \mathrm{U}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}=\left\{\left(\begin{array}{l}
12 \\
36 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
6
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}
$$

provides a Jordan canonical basis of \mathbb{R}^{3}. We conclude

$$
A=Q J Q^{-1}=\left(\begin{array}{cccc}
12 & 0 & 1 \\
36 & 0 & 0 \\
0 & 6 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
12 & 0 & 1 \\
36 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)^{-1}
$$

In practice, almost any choice of $\mathbf{x} \in \mathbb{R}^{3}$ will generate a cycle of length three!
2. The matrix $B=\left(\begin{array}{ccc}7 & 1 & -4 \\ 0 & 3 & 0 \\ 8 & 1 & -5\end{array}\right) \in M_{3}(\mathbb{R})$ has characteristic equation

$$
p(t)=(3-t)\left(t^{2}-2 t-3\right)=-(t+1)^{1}(t-3)^{2}
$$

$\operatorname{dim} K_{-1}=1 \Longrightarrow K_{-1}=E_{-1}=\operatorname{Span}\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$, spanned by a cycle of length one.
Since $\operatorname{dim} K_{3}=2$, we have

$$
K_{3}=\mathcal{N}(B-3 I)^{2}=\mathcal{N}\left(\begin{array}{ccc}
4 & 1 & -4 \\
0 & 0 & 0 \\
8 & 1 & -8
\end{array}\right)^{2}=\mathcal{N}\left(\begin{array}{ccc}
-16 & 16 \\
0 & 1 & 0 \\
-32 & 0 & 32
\end{array}\right)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}
$$

This is spanned by a cycle of length two: $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ is an eigenvector and

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=(B-3 I)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

We conclude that $\beta=\left\{\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$ is a Jordan canonical basis for B, and that

$$
B=Q J Q^{-1}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)^{-1}
$$

3. Let $\mathrm{T}=\frac{\mathrm{d}}{\mathrm{d} x}$ on $P_{3}(\mathbb{R})$. With respect to the standard basis $\epsilon=\left\{1, x, x^{2}, x^{3}\right\}$,

$$
A=[\mathrm{T}]_{\epsilon}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

With only one eigenvalue $\lambda=0$, we have a single generalized eigenspace $K_{0}=P_{3}(\mathbb{R})$. It is easy to check that $f(x)=x^{3}$ generates a cycle of length three and thus a Jordan canonical basis:

$$
\beta=\left\{6,6 x, 3 x^{2}, x^{3}\right\} \Longrightarrow[T]_{\beta}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
6 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
6 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Our final results state that this process works generally.
Theorem 3.12. Let $\mathrm{T} \in \mathcal{L}(V)$ have an eigenvalue λ. If $\operatorname{dim} K_{\lambda}<\infty$, then there exists a basis $\beta_{\lambda}=\beta_{\mathbf{x}_{1}} \cup \cdots \cup \beta_{\mathbf{x}_{n}}$ of K_{λ} consisting of finitely many linearly independent cycles.

Intuition suggests that we create cycles $\beta_{\mathbf{x}_{j}}$ by starting with a basis of the eigenspace E_{λ} and extending backwards: for each \mathbf{x}, if $\mathbf{x}=(\mathrm{T}-\lambda \mathrm{I})(\mathbf{y})$, then $\mathbf{x} \in \beta_{\mathbf{y}}$; now repeat until you have a maximum length cycle. This is essentially what we do, though a sneaky induction is required to make sure we keep track of everything and guarantee that the result really is a basis of K_{λ}.

Proof. We prove by induction on $m=\operatorname{dim} K_{\lambda}$.
(Base case) If $m=1$, then $K_{\lambda}=E_{\lambda}=\operatorname{Span} \mathbf{x}$ for some eigenvector \mathbf{x}. Plainly $\{\mathbf{x}\}=\beta_{\mathbf{x}}$.
(Induction step) Fix $m \geq 2$. Write $n=\operatorname{dim} E_{\lambda} \leq m$ and $\mathrm{U}=(\mathrm{T}-\lambda \mathrm{I})_{K_{\lambda}}$.
(i) For the induction hypothesis, suppose every generalized eigenspace with dimension $<m$ (for any linear map!) has a basis consisting of independent cycles of generalized eigenvectors.
(ii) Define $W=\mathcal{R}(\mathrm{U}) \cap E_{\lambda}$: that is

$$
\mathbf{w} \in W \Longleftrightarrow\left\{\begin{array}{l}
\mathrm{U}(\mathbf{w})=\mathbf{0} \text { and } \\
\mathbf{w}=\mathrm{U}(\mathbf{v}) \text { for some } \mathbf{v} \in K_{\lambda}
\end{array}\right.
$$

Let $k=\operatorname{dim} W$, choose a complementary subspace X such that $E_{\lambda}=W \oplus X$ and select a basis $\left\{\mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right\}$ of X. If $k=0$, the induction step is finished (why?). Otherwise we continue...
(iii) The calculation in the proof of Lemma 3.10 (take $j=1$) shows that $\mathcal{R}(\mathrm{U})$ is T-invariant; it is therefore the single generalized eigenspace \tilde{K}_{λ} of $\mathrm{T}_{\mathcal{R}(\mathrm{U})}$.
(iv) By the rank-nullity theorem,

$$
\operatorname{dim} \mathcal{R}(\mathrm{U})=\operatorname{rank} \mathrm{U}=\operatorname{dim} K_{\lambda}-\operatorname{null} \mathrm{U}=m-\operatorname{dim} E_{\lambda}<m
$$

By the induction hypothesis, $\mathcal{R}(\mathrm{U})$ has a basis of independent cycles. Since the last non-zero element in each cycle is an eigenvector, this basis consists of k distinct cycles $\beta_{\hat{\mathbf{x}}_{1}} \cup \cdots \cup \beta_{\hat{\mathbf{x}}_{k}}$ whose terminal vectors form a basis of W.
(v) Since each $\hat{\mathbf{x}}_{j} \in \mathcal{R}(\mathrm{U})$, there exist vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ such that $\hat{\mathbf{x}}_{j}=\mathrm{U}\left(\mathbf{x}_{j}\right)$. Including the lengthone cycles generated by the basis of X, the cycles $\beta_{\mathbf{x}_{1}}, \ldots, \beta_{\mathbf{x}_{n}}$ now contain

$$
\operatorname{dim} \mathcal{R}(\mathrm{U})+k+(n-k)=\operatorname{rank} \mathrm{U}+\operatorname{null} \mathrm{U}=m
$$

vectors. We leave as an exercise the verification that these vectors are linearly independent.

Corollary 3.13. Suppose that the characteristic polynomial of $\mathrm{T} \in \mathcal{L}(V)$ splits (necessarily $\operatorname{dim} V<$ $\infty)$. Then there exists a Jordan canonical basis, namely the union of bases β_{λ} from Theorem 3.12.

Proof. By Theorem 3.5, V is the direct sum of generalized eigenspaces. By the previous result, each K_{λ} has a basis β_{λ} consisting of finitely many cycles. By Lemma 3.10, the matrix of $\mathrm{T}_{K_{\lambda}}$ has Jordan canonical form with respect to β_{λ}. It follows that $\beta=\bigcup \beta_{\lambda}$ is a Jordan canonical basis for T .

Exercises 3.1 1. For each matrix, find the generalized eigenspaces K_{λ}, find bases consisting of unions of disjoint cycles of generalized eigenvectors, and thus find a Jordan canonical form J and invertible Q so that the matrix may be expressed as $Q J Q^{-1}$.
(a) $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$
(b) $B=\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right)$
(c) $C=\left(\begin{array}{ccc}11 & -4 & -5 \\ 21 & -8 & -11 \\ 3 & -1 & 0\end{array}\right)$
(d) $D=\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 1 & -1 & 3\end{array}\right)$
2. If $\beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a Jordan canonical basis, what can you say about \mathbf{v}_{1} ? Briefly explain why the linear map $L_{A} \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ where $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ has no Jordan canonical form.
3. Find a Jordan canonical basis for each linear map T:
(a) $\mathrm{T} \in \mathcal{L}\left(P_{2}(\mathbb{R})\right)$ defined by $\mathrm{T}(f(x))=2 f(x)-f^{\prime}(x)$
(b) $\mathrm{T}(f)=f^{\prime}$ defined on $\operatorname{Span}\left\{1, t, t^{2}, e^{t}, t e^{t}\right\}$
(c) $\mathrm{T}(A)=2 A+A^{T}$ defined on $M_{2}(\mathbb{R})$
4. In Example 3.11.1. suppose $\mathbf{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$. Show that almost any choice of a, b, c produces a Jordan canonical basis $\beta_{\mathbf{x}}$.
5. We complete the proof of Lemma 3.7 .
(a) Prove part 1: that $E_{\lambda} \leq K_{\lambda} \leq V$.
(b) Verify that $\mathrm{T}-\mu \mathrm{I}$ and $\mathrm{T}-\lambda \mathrm{I}$ commute.
(c) Prove part 3(b): generalized eigenspaces for distinct eigenvalues have trivial intersection.
6. Consider the induction step in the proof of Theorem 3.5 .
(a) Prove that W is T-invariant.
(b) Explain why $W \cap K_{\mu}=\{\mathbf{0}\}$.
(c) The assumption $p_{W}(t)=\left(\lambda_{1}-t\right)^{\operatorname{dim} K_{\lambda_{1}}} \cdots\left(\lambda_{k}-t\right)^{\operatorname{dim} K_{\lambda_{k}}}$ near the end of the proof is the induction hypothesis for part 1 (b). Why can't we also assume that $\operatorname{dim} K_{\lambda_{j}}=m_{j}$ and thus tidy the inequality argument near the end of the proof?
7. We finish some of the details of Theorem 3.12.
(a) In step (ii), suppose $\operatorname{dim} W=k=0$. Explain why $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is in fact a basis of K_{λ}, so that the rest of the proof is unnecessary.
(b) In step (v), prove that the m vectors in the cycles $\beta_{\mathbf{x}_{1}}, \ldots, \beta_{\mathbf{x}_{n}}$ are linearly independent. (Hint: model your argument on part 1 of Lemma 3.10)

3.2 Cycle Patterns and the Dot Diagram

In this section we obtain a useful result that helps us compute Jordan forms more efficiently and systematically. To give us some clues how to proceed, here is a lengthy example.

Example 3.14. Precisely three Jordan canonical forms $A, B, C \in M_{3}(\mathbb{R})$ correspond to the characteristic polynomial $p(t)=(5-t)^{3}$:

$$
A=\left(\begin{array}{ccc}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right) \quad B=\left(\begin{array}{lll}
5 & 1 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right) \quad C=\left(\begin{array}{lll}
5 & 1 & 0 \\
0 & 5 & 1 \\
0 & 0 & 5
\end{array}\right)
$$

In all three cases the standard basis $\beta=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is Jordan canonical, so how do we distinguish things? By considering the number and lengths of the cycles of generalized eigenvectors.

- A has eigenspace $E_{5}=K_{5}=\mathbb{R}^{3}$. Since $(A-5 I) \mathbf{v}=\mathbf{0}$ for all $\mathbf{v} \in \mathbb{R}^{3}$, we have maximum cycle-length one. We therefore need three distinct cycles to construct a Jordan basis, e.g.

$$
\beta_{\mathbf{e}_{1}}=\left\{\mathbf{e}_{1}\right\}, \quad \beta_{\mathbf{e}_{2}}=\left\{\mathbf{e}_{2}\right\}, \quad \beta_{\mathbf{e}_{3}}=\left\{\mathbf{e}_{3}\right\} \Longrightarrow \beta=\beta_{\mathbf{e}_{1}} \cup \beta_{\mathbf{e}_{2}} \cup \beta_{\mathbf{e}_{3}}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}
$$

- B has eigenspace $E_{5}=\operatorname{Span}\left\{\mathbf{e}_{1}, \mathbf{e}_{3}\right\}$. By computing

$$
\mathbf{v}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \Longrightarrow(B-5 I) \mathbf{v}=\left(\begin{array}{l}
b \\
0 \\
0
\end{array}\right) \Longrightarrow(B-5 I)^{2} \mathbf{v}=\mathbf{0}
$$

we see that $\beta_{\mathbf{v}}$ is a cycle with maximum length two, provided $b \neq 0\left(\mathbf{v} \notin E_{5}\right)$. We therefore need two distinct cycles, of lengths two and one, to construct a Jordan basis, e.g.

$$
\beta_{\mathbf{e}_{2}}=\left\{(B-5 I) \mathbf{e}_{2}, \mathbf{e}_{2}\right\}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}, \quad \beta_{\mathbf{e}_{3}}=\left\{\mathbf{e}_{3}\right\} \Longrightarrow \beta=\beta_{\mathbf{e}_{2}} \cup \beta_{\mathbf{e}_{3}}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}
$$

- C has eigenspace $E_{5}=\operatorname{Span} \mathbf{e}_{1}$. This time

$$
\mathbf{v}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \Longrightarrow(C-5 I) \mathbf{v}=\left(\begin{array}{l}
b \\
c \\
0
\end{array}\right), \quad(C-5 I)^{2} \mathbf{v}=\left(\begin{array}{l}
c \\
0 \\
0
\end{array}\right), \quad(C-5 I)^{3} \mathbf{v}=\mathbf{0}
$$

generates a cycle with maximum length two provided $c \neq 0$. Indeed this cycle is a Jordan basis, so one cycle is all we need:

$$
\beta=\beta_{\mathbf{e}_{3}}=\left\{(C-5 I)^{2} \mathbf{e}_{3},(C-5 I) \mathbf{e}_{3}, \mathbf{e}_{3}\right\}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}
$$

Why is the example relevant? Suppose that $\operatorname{dim}_{\mathbb{R}} V=3$ and that $\mathrm{T} \in \mathcal{L}(V)$ has characteristic polynomial $p(t)=(5-t)^{3}$. Theorem 3.12 tells us that T has a Jordan canonical form, and that is is moreover one of the above matrices A, B, C. Our goal is to develop a method whereby the pattern of cyclelengths can be determined, thus allowing us to be able to discern which Jordan form is correct. As a side-effect, this will also demonstrate that the pattern of cycle lengths for a given T is independent of the Jordan basis so that, up to some reasonable restriction, the Jordan form of T is unique. To aid us in this endeavor, we require some terminology...

Definition 3.15. Let V be finite dimensional and K_{λ} a generalized eigenspace of $\mathrm{T} \in \mathcal{L}(V)$. Following the Theorem 3.12, assume that $\beta_{\lambda}=\beta_{\mathbf{x}_{1}} \cup \cdots \cup \beta_{\mathbf{x}_{n}}$ is a Jordan canonical basis of $\mathrm{T}_{K_{\lambda}}$, where the cycles are arranged in non-increasing length. That is:

1. $\beta_{\mathbf{x}_{j}}=\left\{(\mathrm{T}-\lambda \mathrm{I})^{k_{j}-1}\left(\mathbf{x}_{j}\right), \ldots, \mathbf{x}_{j}\right\}$ has length k_{j}, and
2. $k_{1} \geq k_{2} \geq \cdots \geq k_{n}$

The dot diagram of $\mathrm{T}_{K_{\lambda}}$ is a representation of the elements of β_{λ}, one dot for each vector: the $j^{\text {th }}$ column represents the elements of $\beta_{\mathbf{x}_{j}}$ arranged vertically with \mathbf{x}_{j} at the bottom.

Given a linear map, our eventual goal is to identify the dot diagram as an intermediate step in the computation of a Jordan basis. First, however, we observe how the conversion of dot diagrams to a Jordan form is essentially trivial.

Example 3.16. Suppose $\operatorname{dim} V=14$ and that $\mathrm{T} \in \mathcal{L}(V)$ has the following eigenvalues and dot diagrams:

Then generalized eigenspaces of T satisfy:

- $K_{-4}=\mathcal{N}(T+4 \mathrm{I})^{2}$ and $\operatorname{dim} K_{-4}=6$;
- $K_{7}=\mathcal{N}(T-7 I)^{3}$ and $\operatorname{dim} K_{7}=5$;
- $K_{12}=\mathcal{N}(\mathrm{T}-12 \mathrm{I})=E_{12}$ and $\operatorname{dim} K_{12}=3 ;$

Thas a Jordan canonical basis β with respect to which its Jordan canonical form is

Note how the sizes of the Jordan blocks are non-increasing within each eigenvalue. For instance, for $\lambda_{1}=-4$, the sequence of cycle lengths $\left(k_{j}\right)$ is $2 \geq 2 \geq 1 \geq 1$.

Theorem 3.17. Suppose β_{λ} is a Jordan canonical basis of $\mathrm{T}_{K_{\lambda}}$ as described in Definition 3.15, and suppose the $i^{t h}$ row of the dot diagram has r_{i} entries. Then:

1. For each $r \in \mathbb{N}$, the vectors associated to the dots in the first r rows form a basis of $\mathcal{N}(\mathrm{T}-\lambda \mathrm{I})^{r}$.
2. $r_{1}=\operatorname{null}(\mathrm{T}-\lambda \mathrm{I})=\operatorname{dim} V-\operatorname{rank}(\mathrm{T}-\lambda \mathrm{I})$
3. When $i>1, r_{i}=\operatorname{null}(\mathrm{T}-\lambda \mathrm{I})^{i}-\operatorname{null}(\mathrm{T}-\lambda \mathrm{I})^{i-1}=\operatorname{rank}(\mathrm{T}-\lambda \mathrm{I})^{i-1}-\operatorname{rank}(\mathrm{T}-\lambda \mathrm{I})^{i}$

Example 3 (3.14 cont). We describe the dot diagrams of the three matrices A, B, C, along with the corresponding vectors in the Jordan canonical basis β and the values r_{i}.

Since $A-5 I$ is the zero matrix, $r_{1}=3-\operatorname{rank}(A-5 I)=3$. The dot diagram has one row, corresponding to three independent cycles of length one: $\beta=\beta_{\mathbf{e}_{1}} \cup \beta_{\mathbf{e}_{2}} \cup \beta_{\mathbf{e}_{3}}$.
B :
$\begin{array}{llllll}\bullet & \bullet & (B-5 I) \mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{e}_{1} & \mathbf{e}_{3} \\ \bullet & \mathbf{x}_{1} & & \mathbf{e}_{2} & \end{array}$

Row 1: $\quad B-5 I=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \Longrightarrow \operatorname{rank}(B-5 I)=1$ and $r_{1}=3-1=2$. The first row $\left\{\mathbf{e}_{1}, \mathbf{e}_{3}\right\}$ is a basis of $E_{5}=\mathcal{N}(B-5 I)$.
Row 2: $\quad(B-5 I)^{2}$ is the zero matrix, whence $r_{2}=\operatorname{rank}(B-5 I)-\operatorname{rank}(B-5 I)^{2}=1-0=1$.
The dot diagram corresponds to $\beta=\beta_{\mathbf{e}_{2}} \cup \beta_{\mathbf{e}_{3}}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\} \cup\left\{\mathbf{e}_{3}\right\}$.
$C: \quad(C-5 I)^{2} \mathbf{x}_{1} \quad \mathbf{e}_{1}$

- $\quad(C-5 I) \mathbf{x}_{1} \quad \mathbf{e}_{2}$

Row 1: $\quad C-5 I=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0\end{array}\right) \Longrightarrow r_{1}=3-\operatorname{rank}(C-5 I)=1$. The first row $\left\{\mathbf{e}_{1}\right\}$ is a basis of $E_{5}=\mathcal{N}(C-5 I)$.
Row 2: $\quad(C-5 I)^{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0\end{array}\right) \Longrightarrow r_{2}=\operatorname{rank}(C-5 I)-\operatorname{rank}(C-5 I)^{2}=2-1=1$. The first two rows $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ form a basis of $\mathcal{N}(C-5 I)^{2}$.
Row 3: $\quad(C-5 I)^{3}$ is the zero matrix, whence $r_{3}=\operatorname{rank}(C-5 I)^{2}-\operatorname{rank}(C-5 I)^{3}=1-0=1$.
Proof. As previously, let $\mathrm{U}=\mathrm{T}-\lambda \mathrm{I}$.

1. Since each dot represents a basis vector $\mathrm{U}^{p}\left(\mathbf{v}_{j}\right)$, any $\mathbf{v} \in K_{\lambda}$ may be written uniquely as a linear combination of the dots. Applying U simply moves all the dots up a row and all dots in the top row to $\mathbf{0}$. It follows that $\mathbf{v} \in \mathcal{N}\left(\mathrm{U}^{r}\right) \Longleftrightarrow$ it lies in the span of the first r rows. Since the dots are linearly independent, they form a basis.
2. By part $1, r_{1}=\operatorname{dim} \mathcal{N}(\mathrm{U})=\operatorname{null}(\mathrm{T}-\lambda \mathrm{I})=\operatorname{dim} V-\operatorname{rank}(\mathrm{T}-\lambda \mathrm{I})$.
3. More generally,

$$
\begin{aligned}
r_{i} & =\left(r_{1}+\cdots+r_{i}\right)-\left(r_{1}+\cdots+r_{i-1}\right)=\operatorname{dim} \mathcal{N}\left(\mathrm{U}^{i}\right)-\operatorname{dim} \mathcal{N}\left(\mathrm{U}^{i-1}\right) \\
& =\operatorname{null}\left(\mathrm{U}^{i}\right)-\operatorname{null}\left(\mathrm{U}^{i-1}\right)=\operatorname{rank}(\mathrm{T}-\lambda \mathrm{I})^{i-1}-\operatorname{rank}(\mathrm{T}-\lambda \mathrm{I})^{i}
\end{aligned}
$$

Since the ranks of maps $(\mathrm{T}-\lambda \mathrm{I})^{i}$ are independent of basis, so also is the dot diagram...
Corollary 3.18. For any eigenvalue λ, the dot diagram is uniquely determined by T and λ. If we list Jordan blocks for each eigenspace in non-increasing order, then the Jordan form of a linear map is unique up to the order of the eigenvalues.

We now have a slightly more systematic method for finding Jordan canonical bases.
Example 3.19. The matrix $A=\left(\begin{array}{cccc}6 & 2 & -4 & -6 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 2 & 1 & -2 & -1\end{array}\right)$ has characteristic equation

$$
p(t)=(3-t)^{2}\left|\begin{array}{cc}
6-t & -6 \\
2 & -1-t
\end{array}\right|=(2-t)(3-t)^{3}
$$

We have two generalized eigenspaces:

- $K_{2}=E_{2}=\mathcal{N}(A-2 I)=\mathcal{N}\left(\begin{array}{cccc}4 & 2 & -4 & -6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & -2 & -3\end{array}\right)=\operatorname{Span}\left(\begin{array}{l}3 \\ 0 \\ 0 \\ 2\end{array}\right)$. The trivial dot diagram \bullet corresponds to this single eigenvector.
- $K_{3}=\mathcal{N}(A-3 I)^{3}$. To find the dot diagram, compute powers of $A-3 I$:

Row 1: $A-3 I=\left(\begin{array}{cccc}3 & 2 & -4 & -6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 1 & -2 & -4\end{array}\right)$ has rank 2 and the first row has $r_{1}=4-2=2$ entries.
Row 2: $\quad(A-3 I)^{2}=\left(\begin{array}{cccc}-3 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 4\end{array}\right)$ has rank 1 and the second row has $r_{2}=2-1=1$ entry.
Since we now have three dots (equalling $\operatorname{dim} K_{3}$), the algorithm terminates and the dot diagram for K_{3} is • •

For the single dot in the second row, we choose something in $\mathcal{N}(A-3 I)^{2}$ which isn't an eigenvector; perhaps the simplest choice is $\mathbf{x}_{1}=\mathbf{e}_{2}$, which yields the two-cycle

$$
\beta_{\mathbf{x}_{1}}=\left\{(A-3 I) \mathbf{x}_{1}, \mathbf{x}_{1}\right\}=\left\{\left(\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)\right\}
$$

To complete the first row, choose any eigenvector to complete the span: for instance $\mathbf{x}_{2}=\left(\begin{array}{l}0 \\ 2 \\ 1 \\ 0\end{array}\right)$.
We now have suitable cycles and a Jordan canonical basis/form:

$$
\beta=\left\{\left(\begin{array}{l}
3 \\
0 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right)\right\}, \quad A=Q J Q^{-1}=\left(\begin{array}{lllll}
3 & 2 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 \\
2 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{lllll}
2 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
3 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}\right)^{-1}
$$

Other choices are available! For instance, if we'd chosen the two-cycle generated by $\mathbf{x}_{1}=\mathbf{e}_{3}$, we'd obtain a different Jordan basis but the same canonical form J :

$$
\tilde{\beta}=\left\{\left(\begin{array}{l}
3 \\
0 \\
0 \\
2
\end{array}\right),\left(\begin{array}{c}
-4 \\
0 \\
0 \\
-2
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right)\right\}, \quad A=\left(\begin{array}{cccc}
3 & -4 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 1 & 1 \\
2 & -2 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)\left(\begin{array}{cccc}
3 & -4 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 1 & 1 \\
2 & -2 & 0 & 0
\end{array}\right)^{-1}
$$

We do one final example for a non-matrix map.
Example 3.20. Let $\epsilon=\left\{1, x, y, x^{2}, y^{2}, x y\right\}$ and define $\mathrm{T}(f(x, y))=2 \frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}$ as a linear operator on $V=\operatorname{Span}_{\mathbb{R}} \epsilon$. The matrix and characteristic polynomial of T is easy to compute:

$$
[\mathrm{T}]_{\epsilon}=\left(\begin{array}{cccccc}
0 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & -1 \\
0 & 0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \Longrightarrow p(t)=t^{6}, \quad\left[\mathrm{~T}^{2}\right]_{\epsilon}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 8 & 2 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad\left[\mathrm{T}^{3}\right]_{\epsilon}=O
$$

There is only one eigenvalue $\lambda=0$ and therefore one generalized eigenspace $K_{0}=V$. We could keep working with matrices, but it is easy to translate the nullspaces of the matrices back to subspaces of V, from which the necessary data can be read off:

$$
\begin{array}{ll}
\mathcal{N}(\mathrm{T})=\operatorname{Span}\left\{1, x+2 y, x^{2}+4 y^{2}+4 x y\right\} & \text { null } \mathrm{T}=3, \operatorname{rank} \mathrm{~T}=3, r_{1}=3 \\
\mathcal{N}\left(\mathrm{~T}^{2}\right)=\operatorname{Span}\left\{1, x, y, x^{2}+2 x y, 2 y^{2}+x y\right\} & \operatorname{null~}^{2}=5, \operatorname{rank} \mathrm{~T}^{2}=1, r_{2}=3-1=2
\end{array}
$$

We now have five dots; since $\operatorname{dim} K_{0}=6$, the last row has one, and the dot diagram is

Since the first two rows span $\mathcal{N}\left(\mathrm{T}^{2}\right)$, we may choose any $f_{1} \notin \mathcal{N}\left(\mathrm{~T}^{2}\right)$ for the final dot: $f_{1}=x y$ is suitable, from which the first column of the dot diagram becomes

Now choose the second dot on the second row to be anything in $\mathcal{N}\left(\mathrm{T}^{2}\right)$ such that the first two rows span $\mathcal{N}\left(\mathrm{T}^{2}\right)$: this time $f_{2}=x^{2}-4 y^{2}$ is suitable, and the diagram becomes:

$$
\begin{array}{cccc}
\mathrm{T}^{2}(x y) & \mathrm{T}\left(x^{2}-4 y^{2}\right) & \bullet & -4 \\
\mathrm{~T}(x y) & x^{2}-4 y^{2} & 2 x+8 y \\
x y & & 2 y-x & x^{2}-4 y^{2} \\
x y &
\end{array}
$$

The final dot is now chosen so that the first row spans $\mathcal{N}(T)$: this time $f_{3}=x^{2}+4 y^{2}+4 x y$ works. The result is a Jordan canonical basis and form for T

As previously, many other choices of cycle-generators f_{1}, f_{2}, f_{3} are available; while these result in different Jordan canonical bases, Corollary 3.18 assures us that we'll always obtain the same canonical form J.

Exercises 3.2 1. Let T be a linear operator whose characteristic polynomial splits. Suppose the eigenvalues and the dot diagrams for the generalized eigenspaces $K_{\lambda_{i}}$ are as follows:

Find the Jordan form J of T.
2. Suppose T has Jordan canonical form

$$
J=\left(\begin{array}{ccc|ccc}
2 & 1 & 0 & & & \\
0 & 2 & 1 & & & \\
0 & 0 & 2 & & & \\
\hline & & & 2 & 1 & \\
& & & 0 & 2 & \\
& & & & 3 & \\
& & & & & 3
\end{array}\right)
$$

(a) Find the characteristic polynomial of T.
(b) Find the dot diagram for each eigenvalue.
(c) For each eigenvalue find the smallest k_{j} such that $K_{\lambda_{j}}=\mathcal{N}\left(T-\lambda_{j} I\right)^{k_{j}}$.
3. For each matrix A find a Jordan canonical form and an invertible Q such that $A=Q J Q^{-1}$.
(a) $A=\left(\begin{array}{ccc}-3 & 3 & -2 \\ -7 & 6 & -3 \\ 1 & -1 & 2\end{array}\right)$
(b) $A=\left(\begin{array}{ccc}0 & 1 & -1 \\ -4 & 4 & -2 \\ -2 & 1 & 1\end{array}\right)$
(c) $A=\left(\begin{array}{cccc}0 & -3 & 1 & 2 \\ -2 & 1 & -1 & 2 \\ -2 & 1 & -1 & 2 \\ -2 & -3 & 1 & 4\end{array}\right)$
4. For each linear operator T , find a Jordan canonical form J and basis β :
(a) $\mathrm{T}(f)=f^{\prime}$ on $\operatorname{Span}_{\mathbb{R}}\left\{e^{t}, t e^{t}, t^{2} e^{t}, e^{2 t}\right\}$
(b) $\mathrm{T}(f(x))=x f^{\prime \prime}(x)$ on $P_{3}(\mathbb{R})$
(c) $\mathrm{T}(f)=a f_{x}+b f_{y}$ on $\operatorname{Span}_{\mathbb{R}}\left\{1, x, y, x^{2}, y^{2}, x y\right\}$. How does your answer depend on a, b ?
5. (Generalized Eigenvector Method for ODEs) Let $A \in M_{n}(\mathbb{R})$ have an eigenvalue λ and suppose $\beta_{\mathbf{v}_{0}}=\left\{\mathbf{v}_{k-1}, \ldots, \mathbf{v}_{1}, \mathbf{v}_{0}\right\}$ is a cycle of generalized eigenvectors for this eigenvalue. Show that

$$
\mathbf{x}(t):=e^{\lambda t} \sum_{j=0}^{k-1} b_{j}(t) \mathbf{v}_{j} \quad \text { satisfies } \quad \mathbf{x}^{\prime}(t)=A \mathbf{x} \Longleftrightarrow\left\{\begin{array}{l}
b_{0}^{\prime}(t)=0, \text { and } \\
b_{j}^{\prime}(t)=b_{j-1}(t) \text { when } j \geq 1
\end{array}\right.
$$

Use this method to solve the system of differential equations

$$
\mathbf{x}^{\prime}=\left(\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 2
\end{array}\right) \mathbf{x}
$$

3.3 The Rational Canonical Form (non-examinable)

We finish the course with a very quick discussion of what can be done when the characteristic polynomial of a linear map does not split. In such a situation, we may assume that

$$
\begin{equation*}
p(t)=(-1)^{n}\left(\phi_{1}(t)\right)^{m_{1}} \cdots\left(\phi_{k}(t)\right)^{m_{k}} \tag{*}
\end{equation*}
$$

where each $\phi_{j}(t)$ is an irreducible monic polynomial over the field.
Example 3.21. The following matrix has characteristic equation $p(t)=\left(t^{2}+1\right)^{2}(3-t)$

$$
A=\left(\begin{array}{ccccc}
0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & - & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0
\end{array}\right) \in M_{5}(\mathbb{R})
$$

This doesn't split over \mathbb{R} since $t^{2}+1=0$ has no real roots. It is, however, diagonalizable over \mathbb{C}.
A couple of basic facts from algebra:

- Every polynomial splits over \mathbb{C} : every $A \in M_{n}(\mathbb{C})$ therefore has a Jordan form.
- Every polynomial over \mathbb{R} factorizes into linear or irreducible quadratic factors.

The question is how to deal with non-linear irreducible factors in the characteristic polynomial.
Definition 3.22. The monic polynomial $t^{k}+a_{k-1} t^{k-1}+\cdots+a_{0}$ has companion matrix

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & 0 & & 0 & -a_{1} \\
0 & 1 & 0 & & 0 & -a_{2} \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & 0 & & 0 & -a_{k-2} \\
0 & 0 & 0 & \cdots & 1 & -a_{k-1}
\end{array}\right)
$$

(when $k=1$, this is the 1×1 matrix $\left(-a_{0}\right)$)

If $\mathrm{T} \in \mathcal{L}(V)$ has characteristic polynomial (*), then a rational canonical basis is a basis for which

$$
[\mathrm{T}]_{\beta}=\left(\begin{array}{cccc}
C_{1} & O & \cdots & O \\
O & C_{2} & & O \\
\vdots & & \ddots & \vdots \\
O & O & \cdots & C_{r}
\end{array}\right)
$$

where each C_{j} is a companion matrix of some $\left(\phi_{j}(t)\right)^{s_{j}}$ where $s_{j} \leq m_{j}$. We call $[\mathrm{T}]_{\beta}$ a rational canonical form of T.

We state the main result without proof:
Theorem 3.23. A rational canonical basis exists for any linear operator T on a finite-dimensional vector space V. The canonical form is unique up to ordering of companion matrices.

Example (3.21 cont). The matrix A is already in rational canonical form: the standard basis is rational canonical with three companion blocks,

$$
C_{1}=C_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad C_{3}=(3)
$$

Example 3.24. Let $A=\left(\begin{array}{cc}4 & -3 \\ 2 & 2\end{array}\right) \in M_{2}(\mathbb{R})$. Its characteristic polynomial

$$
p(t)=t^{2}-6 t+14=(t-3)^{2}+5
$$

doesn't split over \mathbb{R} and so it has no eigenvalues. Instead simply pick a vector, $\mathbf{x}=\binom{1}{0}$ (say), define $\mathbf{y}=A \mathbf{x}=\binom{4}{2}$, let $\beta=\{\mathbf{x}, \mathbf{y}\}$ and observe that

$$
\left[\mathrm{L}_{A}\right]_{\beta}=\left(\begin{array}{cc}
0 & -14 \\
1 & 6
\end{array}\right)
$$

is a rational canonical form. Indeed this works for $\operatorname{any} \mathbf{x} \neq \mathbf{0}$: if $\beta:=\{\mathbf{x}, A \mathbf{x}\}$, then Cayley-Hamilton forces

$$
A^{2} \mathbf{x}=(6 A-14 I) \mathbf{x}=-14 \mathbf{x}+6 A \mathbf{x} \Longrightarrow\left[\mathrm{~L}_{A}\right]_{\beta}=\left(\begin{array}{cc}
0 & -14 \\
1 & 6
\end{array}\right)
$$

whence β is a rational canonical basis and the form $\left[L_{A}\right]_{\beta}$ is independent of \mathbf{x} !
A systematic approach to finding rational canonical forms is similar to that for Jordan forms: for each irreducible divisor of $p(t)$, the subspace $K_{\phi}=\mathcal{N}(\phi(\mathrm{T}))^{m}$ plays a role analogous to a generalized eigenspace; indeed $K_{\lambda}=K_{\phi}$ for the linear irreducible factor $\phi(t)=\lambda-t$!
We finish with two examples; hopefully the approach is intuitive, even without theoretical justification.

Examples 3.25. If the characteristic polynomial of $\mathrm{T} \in \mathcal{L}\left(\mathbb{R}^{4}\right)$ is

$$
p(t)=(\phi(t))^{2}=\left(t^{2}-2 t+3\right)^{2}=t^{4}-4 t^{3}+10 t^{2}-12 t+9
$$

then there are two possible rational canonical forms; here is an example of each.

1. If $A=\left(\begin{array}{cccc}0 & -15 & 0 & -9 \\ 2 & 2 & -3 & 0 \\ 0 & -9 & 0 & -6 \\ -3 & 0 & 5 & 2\end{array}\right)$, then $\phi(A)=O$ is the zero matrix, whence $\mathcal{N}(\phi(A))=\mathbb{R}^{4}$. Since $\phi(t)$ isn't the full characteristic polynomial, we expect there to be two independent cycles of length two in the canonical basis. Start with something simple as a guess:

$$
\mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \mathbf{x}_{2}=A \mathbf{x}_{1}=\left(\begin{array}{c}
0 \\
2 \\
0 \\
-3
\end{array}\right) \Longrightarrow A \mathbf{x}_{2}=\left(\begin{array}{c}
-3 \\
4 \\
0 \\
-6
\end{array}\right)=-3 \mathbf{x}_{1}+2 \mathbf{x}_{2}
$$

Now make another choice that isn't in the span of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$:

$$
\mathbf{x}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \Longrightarrow \mathbf{x}_{4}=A \mathbf{x}_{3}=\left(\begin{array}{c}
0 \\
-3 \\
0 \\
5
\end{array}\right) \Longrightarrow A \mathbf{x}_{4}=\left(\begin{array}{c}
0 \\
-6 \\
-3 \\
10
\end{array}\right)=-3 \mathbf{x}_{3}+2 \mathbf{x}_{4}
$$

We therefore have a rational canonical basis $\beta=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ and

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & -3 \\
0 & 0 & 1 & 0 \\
0 & -3 & 0 & 5
\end{array}\right)\left(\begin{array}{cccc}
0 & -3 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & -3 & 0 & 5
\end{array}\right)^{-1}
$$

Over \mathbb{C}, this example is diagonalizable. Indeed each of the 2×2 companion matrices is diagonalizable over \mathbb{C}.
2. Let $B=\left(\begin{array}{cccc}0 & 0 & 2 & 1 \\ 1 & 1 & -1 & -1 \\ 0 & 1 & -2 & -16 \\ 0 & 0 & 1 & 5\end{array}\right)$. This time

$$
\phi(B)=B^{2}-2 B+3 I=\left(\begin{array}{cccc}
3 & 2 & -7 & -29 \\
-1 & 1 & 4 & 13 \\
1 & -3 & -6 & -17 \\
0 & 1 & 1 & 2
\end{array}\right) \Longrightarrow \mathcal{N}(\phi(B))=\operatorname{Span}\left\{\left(\begin{array}{c}
3 \\
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
11 \\
-2 \\
0 \\
1
\end{array}\right)\right\}
$$

Anything not in this span will suffice as a generator for a single cycle of length four: e.g.,

$$
\begin{aligned}
& \mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{x}_{2}=B \mathbf{x}_{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{x}_{3}=B \mathbf{x}_{2}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right), \quad \mathbf{x}_{4}=B \mathbf{x}_{3}=\left(\begin{array}{c}
2 \\
0 \\
-1 \\
1
\end{array}\right) \\
& B \mathbf{x}_{4}=\left(\begin{array}{c}
-1 \\
-14 \\
-1
\end{array}\right)=-9\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+12\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)-10\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)+4\left(\begin{array}{c}
2 \\
0 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

We therefore have a rational canonical basis $\beta=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ and

$$
B=\left(\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & -9 \\
1 & 0 & 0 & 12 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 4
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)^{-1}
$$

In contrast to the first example, B isn't diagonalizable over C. It has Jordan form $J=\left(\begin{array}{llll}\lambda & 1 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \frac{1}{2}\end{array}\right)$
where $\lambda=1+i \sqrt{2}$.

[^0]: ${ }^{1}$ This is yet another argument where we consider a suitable subspace to which we can apply an induction hypothesis; recall the spectral theorem, Schur's lemma, bilinear form diagonalization, etc. Theorem 3.12 will provide one more!

