
2 Axioms of Probability

2.1 Sample Spaces

In this chapter we more formally define the concept of probability.

Definition 2.1. The sample space S of an experiment is the set of possible outcomes. An event E is
any subset of S; it occurs if the result of the experiment is any of the outcomes in E.

Examples 2.2. 1. When drawing a card from a standard 52 card pack, the sample space S is the set
of cards. Let E be the set of hearts: this event occurs if we deal any heart from the pack.

2. Roll two standard dice and sum the total. The sample space has eleven elements;

S = {2, 3, . . . , 12}

The event E = {2, 3, 4, 5, 6} occurs if we roll a total of 6 or less.

3. If the experiment involves rolling two standard dice and recording the unordered pair of values,
then the sample space has 6 + 5 + 4 + 3 + 2 + 1 = 21 elements;

S =
{
{x, y} : 1 ≤ x ≤ y ≤ 6

}
If we care about order, then the sample space has 36 elements. The event “roll a double” is the
subset E =

{
{x, x} : 1 ≤ x ≤ 6

}
.

4. Sample spaces can be infinite sets: the sample space of a human lifetime (in years) is (poten-
tially!) the interval R+

0 = [0, ∞). The event E = [100, ∞) is ‘reach your 100th birthday.”

5. The sample space for the experiment of throwing a dart at a dartboard might be represented as

S = {(x, y) : x2 + y2 < 6.692} ∪ { f }

where (x, y) is the co-ordinate of a point on the board (disk radius 6.69 in), and f represents
failing to hit the board. The inner bullseye has radius 0.5 in, whence the event “score 50 with a
single dart” is the subset E = {(x, y) : x2 + y2 < 0.25}.

Since events are sets, they can be manipulated in the usual ways.

Definition 2.3. Suppose S is a sample space and E, F are events.

1. E ⊆ F means that every outcome in E is also in F: equivalently, if E occurs then F occurs.

2. The complement of E is the event EC = {x ∈ S : x ̸∈ E}, that is “E doesn’t occur.”

3. The union E ∪ F = {x ∈ S : x ∈ E or x ∈ F} is the event “E occurs or F occurs (or both).”

4. The intersection E ∩ F = {x ∈ S : x ∈ E and x ∈ F} is the event “E and F both occur.” It is
permissible to write EF instead.

We say that E, F are mutually exclusive if E ∩ F = ∅.
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These set theoretic constructions can be represented by Venn diagrams. The basic rules of set algebra
also apply.

Lemma 2.4. Suppose E, F, G are events (subsets of some sample space S). Then the have the basic
set laws: observe the symmetry in these.

1. Associativity: (E ∪ F) ∪ G = E ∪ (F ∪ G) and (E ∩ F) ∩ G = E ∩ (F ∩ G)

2. Commutativity: E ∪ F = F ∪ E and E ∩ F = F ∩ E

3. Distributivity:a (E ∪ F) ∩ G = (E ∩ G) ∪ (F ∩ G) and (E ∩ F) ∪ G = (E ∪ G) ∩ (F ∪ G)

4. De Morgan’s Laws: (E ∩ F)C = EC ∪ FC and (E ∪ F)C = EC ∩ FC. These extend to the general
statements (

⋃
Ei)

C =
⋂

EC
i and (

⋂
Ei)

C =
⋃

EC
i even if there are infinitely many events Ei.

aTo remember these, pretend that ∪ is addition and ∩ multiplication, then it looks like (E + F)G = EG + FG. For the
second law, switch the roles of addition and multiplication!

Sketch Proof. These are generally proved by offloading the propositions to formal statements involv-
ing and, or, not. For example:

x ∈ E ∪ F ⇐⇒ x ∈ E or x ∈ F ⇐⇒ x ∈ F or x ∈ E ⇐⇒ x ∈ F ∪ E

For the first three propositions (and De Morgan when there are
two events) it is useful instead to reason via a Venn diagram. For
instance the shaded region in the the picture represents the dis-
tributive law

(E ∩ F) ∪ G = (E ∪ G) ∩ (F ∪ G)

Just think through what it means for an outcome x to lie in each
side of this equality.

S

G F

E

For a general proof of De Morgan:

x ∈
(⋃

Ei

)C
⇐⇒ x ̸∈

⋃
Ei ⇐⇒ x ̸∈ Ei for every listed event Ei

⇐⇒ x ∈ EC
i for every listed event Ei

⇐⇒ x ∈
⋂

EC
i

This first section is little more than the basic rules of set algebra interpreted in the language of events.
For instance, it is more important to be able to recognize De Morgan’s laws in English; the first being
the equivalence of two sentences;

E and F do not occur simultaneously ⇐⇒ at least one of E or F does not occur.
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2.2 Axioms and Identities

Now that we understand a sample spaces, we want to assign measures of likelihood to various
events. You’ve thought about many examples of this in your mathematical career:

Example 2.5. A roll of a fair die has equal likelihood of producing each of the six outcomes. We’d
say, for instance, that the probability of rolling a multiple of three is 2

6 = 1
3 . This is merely counting:

the number of ways to succeed (2: roll a 3 or 6), divided by the number of possible outcomes (6).

Since the probability is measuring the chance of an event occurring, we represented it as a fraction:
in general the probability of an event will be a number P(E) between 0 and 1. Our example is
straightforward for two reasons: there are finitely many possible outcomes and each is equally likely.
We plainly cannot assume these properties for a general experiment! Instead we work backwards:
what properties do we want a probability function to satisfy?

Definition 2.6. Suppose S is a sample space. A probability measure1is a function P which assigns a
value P(E) to any event E ⊆ S and additionally satisfies:

1. For every event 0 ≤ P(E) ≤ 1.

2. P(S) = 1

3. If E1, E2, . . . are a finite or countable list of mutually exclusive events (i ̸= j =⇒ Ei ∩ Ej = ∅),
then

P
(⋃

Ei

)
= ∑ P(Ei)

We revisit the example in this language. The sample space for the experiment “roll a fair die” is

S = {1, 2, 3, 4, 5, 6}

This set has 26 = 64 distinct subsets, each of which is an event. For instance E = {1, 3, 5} is the event
“roll an odd number.” Since each event of the form “roll j” is equally likely, it seems reasonable to
define the probability function

P(E) =
number of elements in E

6
=

1
6
|E|

We easily verify our axioms:

1. Since 0 ≤ |E| ≤ 6 we see that 0 ≤ P(E) ≤ 6. The zero corresponds to the event E = ∅; this is a
legitimate event, even if it can never occur!

2. |S| = 6 =⇒ P(S) = 6
6 = 1.

3. If Ei ∩ Ej = ∅, then
∣∣Ei ∪ Ej

∣∣ = |Ei| +
∣∣Ej
∣∣, from which P(Ei ∪ Ej) = P(Ei) + P(Ej). Since

there are only finitely many possible events, verifying this for two mutually exclusive events is
enough.

1It is not in fact necessary for P(E) to be defined for all subsets E ⊆ S. For instance, in Example 2.7 it is possible to
consider subsets of the dartboard which do not have a measurable area! Such concerns are beyond the level of this course,
though you should at least be aware of the imprecision of our definition. A more advanced study of probability requires a
thorough grounding in analysis and typically starts by building the axioms within measure theory.

3



This is plainly a very simple situation. For something trickier, revisit our dartboard example.

Example 2.7. The experiment is to throw a single dart at the dartboard. We could define a suitable
probability function as follows. For a given region of the dartboard, let ER be the event “the dart
lands inside R” and let

P(ER) =
1

2A
Area(R)

where A = 1
4 π6.692 in2 is the area of the dartboard. In order to satisfy the axioms, the event “miss the

board” would have probability 1
2 .

Lemma 2.8. Suppose that P is a probability measure on S and E, F are events.

1. P(∅) = 0

2. P(EC) = 1 − P(E).

3. E ⊆ F =⇒ P(E) ≤ P(F)

Proof. 1. Plainly S, ∅ are mutually exclusive (S ∩ ∅ = ∅). By axiom 3,

P(S) = P(S ∪ ∅) = P(S) + P(∅) =⇒ P(∅) = 0

2. E ∪ EC = S and E ∪ EC = ∅. Now use axioms 2 and 3 to see that P(E) + P(EC) = 1.

3. Write F = E ∪ (F ∩ EC). Since these two sets are mutually exclusive, axioms 1 and 3 tell us that

P(F) = P(E) + P(F ∩ EC) ≥ P(E)

Impossible and Certain Events? If light of the facts that P(∅) = 0 and P(S) = 1, it is reasonable to
ask if the converses also hold. That is:

P(E) = 0 ???
=⇒ E = ∅, P(E) = 1 ???

=⇒ E = S

If there are finitely many distinct events and each singleton event E = {x} has positive probability,
then the above claims are indeed true. In such cases it common to say that an event with probability
1 is certain and one with probability 0 is impossible. A great many of our examples will be of this form.
For instance,

It is impossible to roll a three and a four simultaneously on a fair die.

When there are infinitely many possible events, things get stranger. Consider the example of the
dartboard and the event “hit the point at the center of the board.” Since a point has zero area, the
probability of this event is zero, though it is clearly possible! It is more precise to say that a probability
zero event happens almost never (a.n.) and a probability one event almost always (a.a.); thus

A dart almost never hits the exact center of a dartboard.
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The Inclusion–Exclusion Principle Recall Axiom 3. What should we do if we want to consider a
union of non-mutually exclusive events.

Example 2.9. A fair die is rolled. Consider the events

• E1 = {2, 4, 6}: roll and even number.

• E2 = {3, 6}: roll a number divisible by three.

Then E1 ∪ E2 = {2, 3, 4, 6} from which

P(E1 ∪ E2) =
4
6
=

2
3
̸= 1

2
+

1
3
= P(E1) + P(E2)

The problem is that we have double-counted the event E1 ∩ E2 = {6} of rolling a six. We may
therefore subtract the probability of this from the right side to balance the equation:

P(E1 ∪ E2) =
2
3
=

1
2
+

1
3
− 1

6
= P(E1) + P(E2)− P(E1 ∩ E2)

The is the simplest version of a general principle.

Theorem 2.10. Suppose E1, E2, . . . , En are a finite list of events. Then

P

(
n⋃

i=1

Ei

)
=

n

∑
i=1

P(Ei)− ∑
i<j

P(Ei ∩ Ej) + ∑
i<j<k

P(Ei ∩ Ej ∩ Ek)− · · ·+ (−1)n−1P(E1 ∩ · · · ∩ En)

Proof. We prove by induction. The base case (n = 2) is nothing but a Venn diagram generalizing the
previous example:

P(E1 ∩ E2) = P(E1) + P(E2)− P(E1 ∩ E2)

Now assume the principle holds for any list of n events and consider a list E1, . . . , En+1. Then

P

(
n+1⋃
i=1

Ei

)
= P

(
n⋃

i=1

Ei ∪ En+1

)
= P

(
n⋃

i=1

Ei

)
+ P(En+1)− P

((
n⋃

i=1

Ei

)
∩ En+1

)

= P

(
n⋃

i=1

Ei

)
+ P(En+1)− P

(
n⋃

i=1

(Ei ∩ En+1)

)

Read this carefully: expanding the first term using the induction hypothesis consists of all com-
binations of events in the inclusion-exclusion principle which do not contain En+1; expanding the
remaining terms gives all combinations which contain En+1.

Example 2.11. 100 math majors are each taking at least one of the classes: Probability, Analysis,
Geometry. Multiple enrollment data is as follows;

Probability: 60 Analysis: 75 Geometry: 30

Probability & Analysis: 40 Probability & Geometry: 15 Analysis & Geometry: 20

5



1. How many students are taking all three classes?

Label the events P, A, G. Since every student is in at least one class, then

1 = P(P∪ A∪G) =
1

100
(60 + 75 + 30 − 40 − 15 − 20)+P(P∩ A∩G) =

90
100

+P(P∩ A∩G)

Thus 10 students are taking all three classes.

2. How many students are taking only geometry?

Attacking this directly (P(PC ∩ AC ∩ G)?) is messy. For an easier approach, start by observing
that

P(P ∪ A) = P(P) + P(A)− P(P ∩ A) =
95
100

Since every student is taking at least one course, the remaining 5 students must be taking only
geometry.

The inclusion–exclusion principle functions almost like a convergent alternating series, approximat-
ing the value P(E1 ∪ · · · ∪ En) alternately from above and below.

Corollary 2.12 (Bonferroni Inequalities). If we truncate Theorem 2.10 after a sequence of additive
terms, we have an upper bound; after a sequence of subtractions, a lower bound. In particular

1. P

(
n⋃

i=1
Ei

)
≤

n
∑

i=1
P(Ei) = P(E1) + · · ·+ P(En)

2. P

(
n⋃

i=1
Ei

)
≥

n
∑

i=1
P(Ei)− ∑

i<j
P(Ei ∩ Ej)

3. P

(
n⋃

i=1
Ei

)
≤

n
∑

i=1
P(Ei)− ∑

i<j
P(Ei ∩ Ej) + ∑

i<j<k
P(Ei ∩ Ej ∩ Ek)

Returning to the previous example, observe that

P(P) + P(A) + P(G)− P(P ∩ A)− P(P ∩ G)− P(A ∩ G) =
90
100

≤ 1

Suppose we naively modified the problem so that only 5 students were taking both Analysis & Ge-
ometry. Then the second Bonferroni inequality fails

P(P) + P(A) + P(G)− P(P ∩ A)− P(P ∩ G)− P(A ∩ G) =
60 + 75 + 30 − 40 − 15 − 5

100

=
105
100

> 1 = P(P ∩ A ∩ G)

This indicates that the data is contradictory; there would be no solution to such a problem.
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2.3 Counting Revisited: Equally Likely Outcomes

We will spend much of the course considering situations when outcomes have different probabili-
ties. As we saw in Example 2.5, when a sample space S is finite and all outcomes are equally likely,
computing probabilities is nothing more than a counting exercise.

Theorem 2.13. Suppose S = {1, . . . , n} and that all outcomes have equal probability. Then, for any
event E,

P(E) =
1
n
|E|

This should be obvious from Axiom 2: if p is the probability of any single outcome in S, then

1 = P(S) =
n

∑
k=1

P(k) = np =⇒ p =
1
n

The majority of this section consists of examples of this simple situation.

Examples 2.14. 1. Two cards are dealt from a standard pack. What is the probability that both are
hearts?

Assuming that the pack is well-shuffled so that any combination of cards is equally likely, the
sample space has size |S| = 52 · 51, while the event “deal two hearts” has size |E| = 13 · 12. The
probability is therefore

P(E) =
13 · 12
52 · 51

=
1
17

Our original approach treated the sample space as consisting of the pair of cards dealt in order.
We could instead solve the problem using combinations. There are

•
∣∣∣S̃∣∣∣ = (52

2 ) =
52·51

2 = 1326 ways to deal a pair of cards from the pack.

•
∣∣∣Ẽ∣∣∣ = (13

2 ) =
13·12

2 = 78 ways to deal a pair of hearts.

Of course, we obtain the same probability as before; P(Ẽ) = (13
2 )

(52
2 )

= 1
17

2. A pair of fair dice, one with four sides the other with six, are rolled and the total summed. Find
the probability that the sum equals 7.

The sample space is

S = {(x, y) : 1 ≤ x ≤ 4, 1 ≤ y ≤ 6}

where all pairs (x, y) are equally likely to occur. The event “sum equals 7” is the set

E = {(1, 6), (2, 5), (3, 4), (4, 3)}

from which P(E) = |E|
|S| =

4
4·6 = 1

6 .
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3. A committee of six is to be formed from a group of ten women and eight men. What is the
probability that the committee is equally balanced by sex?

It is implicit in the question that all committees are equally likely. Plainly there are |S| = (18
6 )

possible committees. The event E of having three people of each sex on the committee requires
us to count how many ways to choose three women from ten and three men from eight: thus

P(E) =
|E|
|S| =

(10
3 )(

8
3)

(18
6 )

=
10!8!6!12!
3!7!3!5!18!

=
10 · 9 · 8

3 · 2
· 8 · 7 · 6

3 · 2
· 6 · 5 · 4 · 3 · 2

18 · 17 · 16 · 15 · 14 · 13

=
10 · 8
17 · 13

=
80
221

The last example is easily generalized, following our earlier counting discussions.

Lemma 2.15. Suppose S = A1 ∪ · · · ∪ Ar is a union of disjoint subsets of sizes n1, n2, . . . , nr respec-
tively. Suppose a subset B ⊆ S of size k is chosen at random. Let E be the event, “B contains precisely
k j elements from Aj, for each j.” Then,

P(E) =
(n1

k1
) · · · (nr

kr
)

(n
k)

Example 2.16. A lottery game has the following rules: balls numbered 1, . . . , 20 are placed in an
urn. You choose four numbers, two odd and two even. At least one each of your even and odd
numbers must be chosen for you to win. If six balls are chosen, with all balls equally likely, what is
your probability of success?
This is not quite the lemma, since there are a few distinct cases to consider. First note that there are
(20

6 ) ways to choose the six balls. We have

• (2
1)(

2
1)(

16
4 ) = 4(16

4 ) = 7280 ways to select one each of the odd and even winning balls.

• (2
2)(

2
1)(

16
3 ) = 2(16

3 ) = 1120 ways to select both odd and one even winning balls; the same for one
odd and both even balls.

• (2
2)(

2
2)(

16
2 ) = (16

2 ) = 120 ways to select all four winning balls.

Sum these possibilities and divide by (20
6 ) = 38760 for the answer

P(win) =
7280 + 1120 + 1120 + 120

38760
=

241
969

≈ 24.9%

Alternatively, you could count how many ways you could lose:

P(win) = 1 − P(lose) = 1 −
(2

0)(
2
0)(

16
6 ) + (2

0)(
2
1)(

16
5 ) + (2

1)(
2
0)(

16
5 ) + (2

0)(
2
2)(

16
4 ) + (2

2)(
2
0)(

16
4 )

(20
6 )

Problems like these form the backbone of elementary probability. For much of the rest of the course
we will consider special situations such as conditional probabilities, where the chance of an event de-
pends on what has come before. Many of the problems we’ve seen can indeed be thought of in such
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a manner, though it is useful and often simpler to try to count your way to an answer by viewing a
desired event as a list of equally possible outcomes of a given experiment.

Example 2.17. We revisit the motivational problem of points from the introduction. Recall that we
solved this using a tree and that the various outcomes of the game were not equally likely. With a bit
of sneakery however, we can view the problem differently.
Suppose player A needs a more points to win, and player B needs b more points. The maximum
number of games that could be played is a + b − 1. We may pretend that all these games are played:
of the 2a+b−1 ordered outcomes, player A wins if he achieves at least a points. Since all outcomes are
now equally likely, the question is simply to count how many outcomes result in player A scoring at
least a. Plainly the answer is

NA :=
a+b−1

∑
k=a

(
a + b − 1

k

)
The probability of player A winning is therefore NA

2a+b−1 , and the stakes should be split in the ratio
2a+b−1 − NA : NA.
In the precise context of the introductory example, we had player A ahead 3–2 in a first-to-five game.
Thus a = 2, b = 3 and we have

NA =
4

∑
k=2

(
4
k

)
=

(
4
2

)
+

(
4
3

)
+

(
4
4

)
= 6 + 4 + 1 = 11

precisely in accordance with our previous approach.

Three famous problems

Simple counting problems often have counterintuitive answers. We finish by considering three fa-
mous examples where your gut feeling is likely wrong.

The Next Card Problem A deck is shuffled and the cards dealt face up one at a time until the first
ace appears. Is the next card more likely to be the ace of spades or the two of clubs?

The Birthday Problem Suppose n people are each equally likely to have any birthday form the 365
days of a non-leap year. How many people must be in the room before it is more likely than
not that two share a birthday?

The Hat-Matching Problem n men throw their hats into the center of a room and the hats are dis-
tributed at random. What is the probability that none of the men get their own hat, and how
does this depend on n?

Each problem has various interpretations; for instance the hat-matching problem could be rephrased
to consider the outcomes of a game of musical chairs.
Have a think about these problems before looking at the answers on the next page. What does your
gut say?
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The Next Card Problem Your gut-feeling is likely that the two of clubs is more likely than the ace of
spades, since the first ace might have been of spades. However. . .

A deck can be arranged in |S| = 52! distinct ways. Remove any card C from the deck; the rest
of the deck now has 51! possible orders.

Let E be the event “card C follows the first ace.” For each order, there is exactly one place to put
card C so that it follows the first ace. It follows that

P(E) =
51!
52!

=
1
52

is independent of the card C. The two events are therefore equally likely!

The Birthday Problem The naive approach is to round up 365
2 = 182.5 and assume the answer is

n = 183. This is way off!

Instead observe that there are |S| = 365n possible arrangements of birthdays, where we include
order. If these are distinct, then there are 365 choices for person one, 364 for person two, 363 for
person three, etc. The result is

P(n distinct birthdays) =
365 · 364 · · · (366 − n)

365n =
n!

365n

(
365
n

)
As expected, the probabilities decrease as n increases;

P(n + 1) =
366 − n − 1

365
P(n) < P(n)

It doesn’t take long to verify that P(22) ≈ 52.4%, P(23) ≈ 49.3% so the answer is 23 people!

The Hat-Matching Problem As n grows, there are more chances for any given man to claim his own
hat, so it is often assumed that the probability should increase to 1 as n → ∞.

Break this down: let Ei =“man i claims his own hat.” By simple counting, we see that

P(Ei) =
1
n

, P(Ei ∩ Ej) =
1

n(n − 1)
, P(Ei ∩ Ej ∩ Ek) =

1
n(n − 1)(n − 2)

since, after man i claims his hat there remain n − 1 hats from which man j can claim his, etc. By
the inclusion–exclusion principle,

P
(⋃

Ei

)
=

n

∑
i=1

P(Ei)− ∑
i<j

P(Ei ∩ Ej)− · · ·+ (−1)n+1P(E1 ∩ · · · ∩ En)

=
n
n
−
(

n
2

)
1

n(n − 1)
+

(
n
3

)
1

n(n − 1)(n − 3)
− · · ·+ (−1)n+1

(
n
n

)
1
n!

=
n

∑
k=1

(−1)k+1
(

n
k

)
(n − k)!

n!
=

n

∑
k=1

(−1)k+1

k!
= 1 −

n

∑
k=0

(−1)k

k!

The last sum is precisely the nth Taylor polynomial for ex evaluated at x = −1, whence

P
(⋂

EC
i

)
= 1 − P

(⋃
Ei

)
=

n

∑
k=0

(−1)k

k!
−−−→
n→∞

e−1 ≈ 36.8%
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