Math 130A: Homework 3

Submit your answers to questions 1, 2, 3, 4, 5 & 6 on Gradescope by Wednesday 20th April

- 1. Two fair dice are rolled. For each $n = 2, 3, 4 \dots, 12$, find;
 - (a) The conditional probability that the *first* die is a 2 given that the sum of the dice is *n*.
 - (b) The conditional probability that *at least one* die is a 2 given that the sum of the dice is *n*.
- 2. Suppose that $\mathbb{P}(A) > 0$. Prove that $\mathbb{P}(A \cap B | A) \ge \mathbb{P}(A \cap B | A \cup B)$
- 3. Prove that if *E*, *F* are mutually exclusive, then

$$\mathbb{P}(E|E\cup F) = \frac{\mathbb{P}(E)}{\mathbb{P}(E) + \mathbb{P}(F)}$$

4. Let $A \subseteq B$. Supposing that $\mathbb{P}(A) \neq 0$ and $\mathbb{P}(B) \neq 1$, express the following as simply as possible (as a number or in terms only of $\mathbb{P}(A)$ and $\mathbb{P}(B)$)

 $\mathbb{P}(A|B), \mathbb{P}(A|B^{\mathsf{C}}), \mathbb{P}(B|A), \mathbb{P}(B|A^{\mathsf{C}})$

- 5. An urn contains 10 balls, of which 6 are white and 4 red.
 - (a) A sample of size 4 is drawn with replacement. What is the conditional probability that the first and third balls drawn will be white given that the sample contains exactly three white balls?
 - (b) Repeat part (a), but where the sample is drawn *without* replacement.
- 6. Suppose that an ordinary deck of 52 cards is randomly divided into four hands of 13 cards each. Let E_i be the event that the *i*th hand contains exactly one ace. Use the multiplication rule to determine the probability $\mathbb{P}(E_1 \cap E_2 \cap E_3 \cap E_4)$ that each hand has an ace.
- 7. An urn contains *n* red and *m* blue balls. They are withdrawn one at a time until a total of $r \le n$ red balls have been withdrawn.
 - (a) Suppose m = 3, n = 4, r = 3 and k = 5. List all the arrangements of all *seven* the balls such that the $r = 3^{rd}$ red ball is the $k = 5^{th}$ to be drawn. Hence find the probability that a total of five balls are withdrawn.

(*Hint: think about how to order the first four balls and the last two*)

- (b) In general, find the probability that exactly $k \ge r$ balls need to be withdrawn.
- 8. Consider the hat-matching problem from chapter 3.
 - (a) It is correct to claim that $\mathbb{P}(E_{k+1}^{\mathsf{C}}|E_1 \cap \cdots \cap E_k) = \frac{n-k-1}{n-k}$, since there are n-k hats remaining, exactly n-k-1 of which do not belong to person k+1. (As in the notes,) When n = 4, and for each of k = 1, 2, 3, verify explicitly which arrangements of hats a, b, c, d correspond to this situation.
 - (b) Explain why we *cannot* continue this argument; that is, why, in general, do we have the following?

$$\mathbb{P}(E_{k+2}^{\mathsf{C}}|E_1\cap\cdots\cap E_k\cap E_{k+1}^{\mathsf{C}})\neq \frac{n-k-2}{n-k-1}$$