Math 130A: Homework 4

Submit your answers to questions 1, 3, 5, 6, 7 & 8 on Gradescope (in Canvas) by Wednesday 11th May

- 1. Suppose a fair die is rolled twice. For each of the following random variables *X*, state the possible values of *X*.
 - (a) The maximum value to appear in the two rolls.
 - (b) The minimum value to appear in the two rolls.
 - (c) The sum of the two rolls.
 - (d) The value of the first roll minus the value of the second.
- 2. Two fair dice are rolled. Let *X* be the product of the two values. Compute the probability mass function of *X*. What is its expectation?

(Use a spreadsheet if you like!)

3. Let *X* be the winnings of a gambler. Let $p(i) = \mathbb{P}\{X = i\}$ and suppose that

$$p(0) = \frac{1}{3};$$
 $p(1) = p(-1) = \frac{13}{55};$ $p(2) = p(-2) = \frac{1}{11};$ $p(3) = p(-3) = \frac{1}{165}$

Compute the conditional probability that the gambler wins i = 1,2,3 given that he wins a positive amount.

- 4. An integer n is selected at random from the set $\{1, 2, 3, ..., 10^3\}$ (each integer has equal probability 10^{-3}). What is the probability that n will be divisible by 3? By 5? By 7? By 15? By 105? How does the answer change if 10^3 is replaced by 10^k as k becomes larger?
- 5. Two coins are flipped. The first lands heads with probability 0.4 and the second with probability 0.8. Assume the results of the flips are independent.
 - (a) Find $\mathbb{P}\{X=1\}$.
 - (b) Determine $\mathbb{E}[X]$.
- 6. A person tosses a fair coin until a tail appears for the first time. If the tail appears on the n^{th} flip, the person wins $\$2^n$. Let X denote the player's winnings.
 - (a) Show that $\mathbb{E}[X] = \infty$
 - (b) Compute $\mathbb{P}\{X \ge \$1 \text{ million}\}$. Would you be willing to pay \$1 million to play this game once?
 - (c) Would you be willing to pay \$1 million for each game if you could play for as long as you liked and only had to settle up when you wanted to stop playing?
- 7. If $\mathbb{E}[X] = -3$ and $\operatorname{Var} X = 5$, find
 - (a) $\mathbb{E}[(2+X)^2];$ (b) Var(4+3X)
- 8. A box contains 4 red and 5 blue marbles. Two marbles are withdrawn randomly. If they are the same color, you win \$12. If they are different colors, you lose \$10. Calculate;
 - (a) The expected amount you win/lose.
 - (b) Its variance.