Math 130A: Homework 5

Submit your answers to questions $1,3,4,6,9 \& 10(a)$ on Gradescope by Wednesday 18th May

1. A man claims to have extrasensory perception (ESP). As a test, a fair coin is flipped 10 times and the man is asked to predict the outcome in advance. He gets 7 out of 10 correct. What it the probability that he would have done at least this well if he did not have ESP?
2. It takes 9 votes from a 12 -person jury to convict a defendant. Suppose that the probability of a juror voting a guilty person innocent is 0.2 , and an innocent person guilty is 0.1 . If each juror acts independently and if 65% of defendants are guilty, find the probability that a jury renders the correct verdict.
3. When coin 1 is flipped if lands heads with probability 0.4 ; when coin 2 is flipped it lands heads with probability 0.7 . One of the coins is chosen randomly and flipped 10 times.
(a) Find the probability that the coin lands heads on exactly 7 of the 10 flips.
(b) Given that the first of the 10 flips lands heads, what is the conditional probability that exactly 7 of the 10 flips will be heads?
4. Suppose that the average number of cars abandoned on a certain highway is 2.2 per week. Approximate the probability that there will be
(a) No abandoned cars in the next week;
(b) At least 2 abandoned cars in the next week.
5. Compare the Poisson approximation with the correct binomial probability for the following cases:
(a) $\mathbb{P}\{X=2\}$ when $n=8, p=0.1$;
(b) $\mathbb{P}\{X=9\}$ when $n=10, p=0.95$;
(c) $\mathbb{P}\{X=0\}$ when $n=10, p=0.1$;
(d) $\mathbb{P}\{X=4\}$ when $n=9, p=0.2$.
6. A fair coin is repeatedly flipped until heads appears for the $10^{\text {th }}$ time. Let X be the number of tails that occur. Compute the probability mass function of X.
7. If X has cumulative distribution function F, what is the distribution function of e^{X} ?
8. Suppose X has mean μ and variance σ^{2}. Find the mean and variance of $Y=\frac{X-\mu}{\sigma}$.
9. Let $X \sim B(n, p)$. If $q=1-p$, prove that

$$
\mathbb{E}\left[\frac{1}{X+1}\right]=\frac{1-q^{n+1}}{(n+1) p}
$$

10. Suppose $X \sim \operatorname{Poisson}(\lambda)$.
(a) Show that $\mathbb{E}\left[X^{n}\right]=\lambda \mathbb{E}\left[(X+1)^{n-1}\right]$ and use this to compute $\mathbb{E}\left[X^{3}\right]$.
(b) Compute $\mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^{3}\right]$. Why are you not surprised at the sign of this value?
